Answer:
12.02 g
Explanation:
From the question given above, the following data were obtained:
Half life (t½) = 2 days
Original amount (N₀) = 96 g
Time (t) = 6 days
Amount remaining (N) =..?
Next, we shall determine the rate of disintegration of the isotope. This can be obtained as follow:
Half life (t½) = 2 days
Decay constant (K) =?
K = 0.693 / t½
K = 0.693 / 2
K = 0.3465 /day
Therefore, the rate of disintegration of the isotope is 0.3465 /day.
Finally, we shall determine the amount of the isotope remaining after 6 days as follow:
Original amount (N₀) = 96 g
Time (t) = 6 days
Decay constant (K) = 0.3465 /day.
Amount remaining (N) =.?
Log (N₀/N) = kt / 2.303
Log (96/N) = (0.3465 × 6) / 2.303
Log (96/N) = 2.079/2.303
Log (96/N) = 0.9027
Take the anti log of 0.9027
96/N = anti log (0.9027)
96/N = 7.99
Cross multiply
96 = N × 7.99
Divide both side by 7.99
N = 96 /7.99
N = 12.02 g
Therefore, the amount of the isotope remaining after 6 days is 12.02 g
Answer:
2nd option
Explanation:
it means that there are 8 carbons
Answer:
3) The relative concentrations of each gas must remain constant.
4)The concentration of each gas will not change.
Explanation:
- For the equilibrium system:
<em>X₂ + Y₂ ⇄ 2XY,</em>
The no. of moles of gases in each side is constant; there is 2 moles of gases at reactants side and 2 moles of gases at products side.
So, changing the volume will not affect on the equilibrium system.
<em>So, the right choice is:</em>
3) The relative concentrations of each gas must remain constant.
4)The concentration of each gas will not change.
Answer:
HCN < HOCl < HF
Explanation:
The larger the Kₐ value, the stronger the acid.
6.2 × 10⁻¹⁰ < 4.0 × 10⁻⁸ < 6.3 × 10⁻⁴
HCN < HOCl < HF
weakest stronger strongest