<span>M(HCl) * </span><span>V(HCl) </span>= <span>M(NaOH) * </span><span>V(<span>NaO<span>H)
</span></span></span>
M(HCl) = 0.35
<span>V(HCl) = 45mL
</span>M(NaOH)= 0.35
now, solne for V(NaOH) by putting these values in the above equation.
M(HCl) * <span>V(HCl) </span>= <span>M(NaOH) * </span><span>V(NaOH)</span>
<span>0.35 * 45 = 0.35 * V(NaOH)</span>
<span>V(NaOH) = 45 mL</span>
Answer:
Explanation: i think it is C if i'am wrong i'am sorry
Between equatorial positions, the F-P-F angle is 120°, and between axial and equatorial positions, it is 90°.
<h3>What in chemical bonding is equatorial position?</h3>
Equatorial Organic Chemistry Illustrated Glossary. Equatorial: In cyclohexane, a bond that runs parallel to the ring's axis (i.e., it follows the chair's equator), or a group joined by such a bond. Positions A are axial, and positions E are equatorial.
<h3>Why do equatorial positions have greater stability?</h3>
As was said in the preceding section, the equilibrium favors the more stable conformer because the chair conformation, in which the methyl group is equatorial, lowers steric repulsion. All monosubstituted cyclohexanes share this property.
To know more about equatorial positions visit:
brainly.com/question/24168112
#SPJ4
Answer: C) The concentration of HI will increase as the system approaches equilibrium.
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For the given chemical reaction:

The expression for
is written as:
![Q_c=\frac{[HI]^2}{[H_2]^1[I_2]^1}](https://tex.z-dn.net/?f=Q_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5E1%5BI_2%5D%5E1%7D)



Thus as
, the reaction will shift towards the right i.e. towards the product side.