The correct answer is ClO, ClO3-, ClO- and ClO4-
Kossel and Lewis in 1916 developed an important theory of chemical combination between atoms known as electronic theory of chemical bonding. According to this, atoms can combine either by transfer of valence electrons from one atom to another (gaining or losing) or by sharing of valence electron in order to have an octet( 8 electron) in their shells. This is known as octet rule.
In ClO2-, oxygen contains 8 electrons in its valence shell and oxygen will share one electron with chlorine to complete the octet of Cl. In other four, we can clearly see that there are more or less than 8 electrons in the outer shell of oxygen so we can clearly say that ClO, ClO3-, ClO- and ClO4- are disobeying the octet rule.
Answer:''Jump to First law of thermodynamics — In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. ... For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes.'' got off the internet but i know this is right because i had this question
Explanation:
Answer:
D. A compound can be separated into two or more elements through a chemical reaction.
Explanation:
By method of elimination, we are going t obtain the correct option.
A. A compound is made up of a single atom.
This is wrong because, a compound can contain more than one atom. An example is H2O
B. A compound is made up of many atoms that are all the same type.
This is wrong because a compound can contain atoms of different elements. An example is H2O. It contains atoms of hydrogen and oxygen.
C. A compound can be separated into two or more elements through physical processes.
This is wrong. H2O being a compound cannot be separated by ordinary physical means.
D. A compound can be separated into two or more elements through a chemical reaction.
This is the correct option.
First one is False. The second is true.
Answer:
Benzene must be kept away from flames.
Explanation:
Edge2020