Answer:
So Philip made 5 bracelets and 4 necklaces.
Step-by-step explanation:
Let x = number of bracelets and y = number of necklaces.
Since we have a total of 9 bracelets and necklaces,
x + y = 9 (1)
Also, we have 8 inches of cord for each bracelet and 20 inches of cord for each necklace, then the total length for the bracelet is 8x and that for the necklace is 20y.
So, the total length for both is 8x + 20y. Since the total length of cord used is 120 inches,
8x + 20y = 120 (2)
Simplifying it we have
2x + 5y = 30 (3).
Writing equations (1) and (3) in matrix form, we have
![\left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}9\\30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%5C%5C30%5Cend%7Barray%7D%5Cright%5D)
Using Cramer's rule to solve for x and y,
![x = det \left[\begin{array}{ccc}9&1\\30&5\end{array}\right] /det \left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \\](https://tex.z-dn.net/?f=x%20%3D%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%261%5C%5C30%265%5Cend%7Barray%7D%5Cright%5D%20%2Fdet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
x = (9 × 5 - 30 × 1) ÷ (1 × 5 - 1 × 2)
x = (45 - 30) ÷ (5 - 2)
x = 15 ÷ 3
x = 5
![y = det \left[\begin{array}{ccc}1&9\\2&30\end{array}\right] /det \left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \\](https://tex.z-dn.net/?f=y%20%3D%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%269%5C%5C2%2630%5Cend%7Barray%7D%5Cright%5D%20%2Fdet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
y = (30 × 1 - 9 × 2) ÷ (1 × 5 - 1 × 2)
y = (30 - 18) ÷ (5 - 2)
y = 12 ÷ 3
y = 4
So Philip made 5 bracelets and 4 necklaces.
Hello,
I note (a,b,c) the result of a quarters, b dimes and c pennies:
2 solutions:
106=( 3, 3, 1)=( 1, 8, 1)
106=( 0, 0, 106) but : 100= 0*25+ 0*10+ 100
106=( 0, 1, 96) but : 100= 0*25+ 1*10+ 90
106=( 0, 2, 86) but : 100= 0*25+ 2*10+ 80
106=( 0, 3, 76) but : 100= 0*25+ 3*10+ 70
106=( 0, 4, 66) but : 100= 0*25+ 4*10+ 60
106=( 0, 5, 56) but : 100= 0*25+ 5*10+ 50
106=( 0, 6, 46) but : 100= 0*25+ 6*10+ 40
106=( 0, 7, 36) but : 100= 0*25+ 7*10+ 30
106=( 0, 8, 26) but : 100= 0*25+ 8*10+ 20
106=( 0, 9, 16) but : 100= 0*25+ 9*10+ 10
106=( 0, 10, 6) but : 100= 0*25+ 10*10+ 0
106=( 1, 0, 81) but : 100= 1*25+ 0*10+ 75
106=( 1, 1, 71) but : 100= 1*25+ 1*10+ 65
106=( 1, 2, 61) but : 100= 1*25+ 2*10+ 55
106=( 1, 3, 51) but : 100= 1*25+ 3*10+ 45
106=( 1, 4, 41) but : 100= 1*25+ 4*10+ 35
106=( 1, 5, 31) but : 100= 1*25+ 5*10+ 25
106=( 1, 6, 21) but : 100= 1*25+ 6*10+ 15
106=( 1, 7, 11) but : 100= 1*25+ 7*10+ 5
106=( 1, 8, 1) is good
106=( 2, 0, 56) but : 100= 2*25+ 0*10+ 50
106=( 2, 1, 46) but : 100= 2*25+ 1*10+ 40
106=( 2, 2, 36) but : 100= 2*25+ 2*10+ 30
106=( 2, 3, 26) but : 100= 2*25+ 3*10+ 20
106=( 2, 4, 16) but : 100= 2*25+ 4*10+ 10
106=( 2, 5, 6) but : 100= 2*25+ 5*10+ 0
106=( 3, 0, 31) but : 100= 3*25+ 0*10+ 25
106=( 3, 1, 21) but : 100= 3*25+ 1*10+ 15
106=( 3, 2, 11) but : 100= 3*25+ 2*10+ 5
106=( 3, 3, 1) is good
106=( 4, 0, 6) but : 100= 4*25+ 0*10+ 0
the answers is
1 Inch = 4 Feet
Here is the explanation -
the side of square = 12
length of Ground - 48
ratio of length = 12 /48
= 1/4
1 : 4
bye
Answer:
Therefore, the probability is P=3/32.
Step-by-step explanation:
We know that Hiro has a stack of cards with one number from the set 1, 1, 2, 2, 3, 3, 3, 4 written on each card.
We calculate the probability that he pulls out a 3 first and then pulls out a 2 without replacing them.
The probability that he pulls out a 3 first is 3/8.
The probability of a second card being 2 is 2/8.
We get:

Therefore, the probability is P=3/32.