Answer: the probability that the tires will fail within three years of the date of purchase is 0.12
Step-by-step explanation:
The average lifetime of a set of tires is 3.4 years. It means that μ = 3.4
Decay parameter, m = 1/3.4 = 0.294
The probability density function is
f(x) = me^-mx
Where x is a continuous random variable representing the time interval of interest(the reliability period that we are testing)
Since x = 3 years,
Therefore, the probability that the tires will fail within three years of the date of purchase is
f(3) = 0.294e^-(0.294 × 3)
f(3) = 0.294e^- 0.882
f(3) = 0.12
Answer:
D. (y-2) becomes (y-5) and -5 < -2
Step-by-step explanation:
When transforming functions, the following applies:
• Adding/subtracting inside the parenthesis to the input shifts the function left(+) and right(-).
• Adding/subtracting outside the parenthesis to the output shifts the function up(+) and down(-).
• Multiplying the function by a number less than 1 compresses it towards the x-axis.
• Multiplying the function by a number greater than 1 stretches it away from the x-axis.
In this situation, the circle is shifted up 3 units and the variable y which controls this is in the function. To move it up you will subtract 3 in the parenthesis for (y-2) so it becomes (y-5). This will move the vertex 3 units higher.
Answer: B
Step-by-step explanation:
I used heron's formula.
Answer:
when (1.2) is substituted into the second equation the equation is true
Step-by-step explanation:
further you substitute x and the then solve
I believe you meant "why is the number of shifts multiplied by approximately 4.5 to obtain the total number of operators required to run the plant"
Answer and Explanation:
There are 3 shifts per day, 49 weeks per year and 5 shifts per operator per week
To get total number of operators required to run the plant, we multiply number of shifts in a year by number if operators per shift.
49 weeks×5 shifts= 245 shifts per operator per year
365×3 shifts= 1095 shifts per year
1095/245=4.5 operators per shift
total number of operators required to run the plant(per day) = 4.5×3= 13.5 approximately 14
total number of operators required to run the plant(per year) =4.5×1095=4927.5 approximately 4928