Wave speed = frequency * wavelength
Input the numbers into this equation :
Wave speed = 200 * 3
Work it out and you will get the answer :
Wave speed = 600 m/s
Answer
is: V<span>an't
Hoff factor (i) for this solution is 1,81.
Change in freezing point from pure solvent to
solution: ΔT =i · Kf · b.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
b - molality, moles of solute per
kilogram of solvent.
</span><span>b = 0,89 m.
ΔT = 3°C = 3 K.
i = </span>3°C ÷ (1,86 °C/m · 0,89 m).
i = 1,81.
The chemical formular for water is H2O.
The H aspect of the formula stands for hydrogen gas and the subscript 2 which is attached to the H symbol signifies that two atoms of hydrogen are joined together, that is two atom of hydrogen are present.
The chemical formula of water indicates that, two atom of hydrogen react with one atom of oxygen to form one molecule of water.
In chemical formulae, subscripts are normally used to indicate the number of atoms that are present in a molecule.
If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m
Given the data in the question;
- Length of the massless beam;

- Distance of support from the left end;

- First mass;

- Distance of beam from the left end( m₁ is attached to );

- Second mass;

- Distance of beam from the right of the support( m₂ is attached to );

Now, since it is mentioned that the beam is in static equilibrium, the Net Torque on it about the support must be zero.
Hence, 
we divide both sides by 

Next, we make
, the subject of the formula
![x_1 = x - [ \frac{m_2x_2}{m_1} ]](https://tex.z-dn.net/?f=x_1%20%3D%20x%20-%20%5B%20%5Cfrac%7Bm_2x_2%7D%7Bm_1%7D%20%5D)
We substitute in our given values
![x_1 = 3.00m - [ \frac{61.7kg\ * \ 0.273m}{31.3kg} ]](https://tex.z-dn.net/?f=x_1%20%3D%203.00m%20-%20%5B%20%5Cfrac%7B61.7kg%5C%20%2A%20%5C%200.273m%7D%7B31.3kg%7D%20%5D)


Therefore, If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m
Learn more; brainly.com/question/3882839
Answer:
The answer is "
".
Explanation:
Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

Potential energy shifts:


Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.



This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.