Yes, Sliding Friction Stops a Car. When you apply the brakes of a car, sliding friction helps to stop it. ... The surface of the drum or rotor slide against the brake disc or pad, which is a force of friction that slows the vehicle down.
Answer:
Because their properties like conductivity, electronic configuration and ionization lies in between the metals and nonmetals.
Explanation:
There are a total of six elements that fall in the category of semiconductors.
Namely these are boron, silicon, germanium, arsenic, antimony, and tellurium.
These elements look like metals i.e. are lustrous but do not conduct electricity so well like a metal does.
Their chemical behavior falls between that of metals and nonmetals. For example, the pure metalloids form covalent crystals like the nonmetals, but like the metals, they generally do not form mono-atomic anions.
Answer:
C. Count the atoms in each substance in the reactants and products.
Explanation:
A chemical reaction can be defined as a chemical process which typically involves the transformation or rearrangement of the atomic, ionic or molecular structure of an element through the breakdown and formation of chemical bonds to produce a new compound or substance.
In order for a chemical equation to be balanced, the condition which must be met is that the number of atoms in the reactants equals the number of atoms in the products.
This ultimately implies that, the mass and charge of the chemical equation are both balanced properly.
In Chemistry, all chemical equation must follow or be in accordance with the Law of Conservation of Mass, which states that mass can neither be created nor destroyed by either a physical transformation or a chemical reaction but transformed from one form to another in an isolated (closed) system.
One of the step used for balancing chemical equations is to count the atoms in each substance in the reactants and products.
For example;
NH3 + O2 -----> NO + H2O
The number of atoms in each chemical element are;
For the reactant side:
Nitrogen, N = 1
Hydrogen, H = 3
Oxygen, O = 2
For the product side;
Nitrogen, N = 1
Hydrogen, H = 2
Oxygen, O = 2
When we balance the chemical equation, we would have;
NH3 + 3O2 -----> 4NO + 2H2O
To solve the problem, we can use Charle's law, which states that for an ideal gas at constant pressure the ratio between absolute temperature T and volume V remains constant:

For a gas transformation, this law can be rewritten as

(1)
where 1 and 2 label the initial and final conditions of the gas.
Before applying the law, we must convert the temperatures in Kelvin:


The initial volume of the gas is

, so if we re-arrange (1) we find the new volume of the gas: