Answer:A is the correct answer
Step-by-step explanation:
Answer:
5x -8y
Step-by-step explanation:
3x+2x-8y
3x and 2x are like terms so we can combine them
5x -8y
First one:
you can add -10m and -13m but you can't add -10m and 2m^4 becuase the powers aren't the same so
when adding the like terms
look at the:
powers, (x^3 adds with x^3)
placehloder letter (x adds with x and y adds with y and so on)
-10m+2m^4-13m-20m^4
powers: m^1 and M^4
placeholders: all m
add
-10m-13m+2m^4-20m^4
-23m-18m^4
second one:
when multiplying exponents, you add with like
so if you multipliy
x^2yz^3 times x^4y^2z^2 thne you would get x^6y^3z^5
when multiply with coeficients
2x^2yz^3 times 4x^4y^2z^2=8x^6y^3z^5
so using associative property a(bc)=(ab)c
2/3 times p^4 times y^3 times y^4 times s^5 times 6 times p^2 times s^3
group like terms
(2/3 times 6) times (p^4 times p^2) times (y^3 times y^4) times (s^5 times s^3)
(4) times (p^6) times (y^7) times (s^8)
4p^6y^7s^8
A triangle can only have at most one right angle.
Here's a proof that shows why this is so:
We know that the sum of all interior angles of a triangle must add up to 180.
Let's say the interior angles are A, B, and C
A + B + C = 180
Let's show that having two right angles is impossible
Let A = B = 90
90 + 90 + C = 180
180 + C = 180
Subtract 180 from both sides
C = 0
We cannot have an angle with 0 degrees in a triangle. Thus, it is impossible to have 2 right angles in a triangle.
Let's try to show that it's impossible to have 3 right angles
Let A = B = C = 90
90 + 90 + 90 = 180 ?
270 ≠ 180
Thus it's impossible to have 3 right angles as well.
Let's show that is possible to have 1 right angle
Let A = 90
90 + B + C = 180
Subtract both sides by 90
B + C = 90
There are values of B and C that will make this true. Thus, a triangle can have at most one right angle.
Have an awesome day! :)
Answer:

Step-by-step explanation:
Look at the image below ↓