Wouldn’t the total for 13 tickets be $446.40 ? We already know the cost for 5 and 8 just add it up .... js
Answer:
Jordan
Step-by-step explanation:
Because each person is in debt the one with the least amount of dept will pay less. Think of it like this:
You owe the bank 85 dollars so your account balance is -85 since you owe money
if you were to owe 100 dollars then you owe more money.
Therefore owing 85 dollars is the least amount of money owed in this case
Answer:
The following are the solution to the given points:
Step-by-step explanation:
Given value:
![1) \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2}\\\\2) \sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}](https://tex.z-dn.net/?f=1%29%20%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7Bk%2B1%7D%20-%20%5Cfrac%7B1%7D%7Bk%2B2%7D%5C%5C%5C%5C2%29%20%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7B%28k%2B6%29%28k%2B7%29%7D)
Solve point 1 that is
:
when,
![k= 1 \to s_1 = \frac{1}{1+1} - \frac{1}{1+2}\\\\](https://tex.z-dn.net/?f=k%3D%201%20%5Cto%20%20s_1%20%3D%20%5Cfrac%7B1%7D%7B1%2B1%7D%20-%20%5Cfrac%7B1%7D%7B1%2B2%7D%5C%5C%5C%5C)
![= \frac{1}{2} - \frac{1}{3}\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B3%7D%5C%5C%5C%5C)
![k= 2 \to s_2 = \frac{1}{2+1} - \frac{1}{2+2}\\\\](https://tex.z-dn.net/?f=k%3D%202%20%5Cto%20%20s_2%20%3D%20%5Cfrac%7B1%7D%7B2%2B1%7D%20-%20%5Cfrac%7B1%7D%7B2%2B2%7D%5C%5C%5C%5C)
![= \frac{1}{3} - \frac{1}{4}\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B3%7D%20-%20%5Cfrac%7B1%7D%7B4%7D%5C%5C%5C%5C)
![k= 3 \to s_3 = \frac{1}{3+1} - \frac{1}{3+2}\\\\](https://tex.z-dn.net/?f=k%3D%203%20%5Cto%20%20s_3%20%3D%20%5Cfrac%7B1%7D%7B3%2B1%7D%20-%20%5Cfrac%7B1%7D%7B3%2B2%7D%5C%5C%5C%5C)
![= \frac{1}{4} - \frac{1}{5}\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B4%7D%20-%20%5Cfrac%7B1%7D%7B5%7D%5C%5C%5C%5C)
![k= n^ \to s_n = \frac{1}{n+1} - \frac{1}{n+2}\\\\](https://tex.z-dn.net/?f=k%3D%20n%5E%20%20%5Cto%20%20s_n%20%3D%20%5Cfrac%7B1%7D%7Bn%2B1%7D%20-%20%5Cfrac%7B1%7D%7Bn%2B2%7D%5C%5C%5C%5C)
Calculate the sum ![(S=s_1+s_2+s_3+......+s_n)](https://tex.z-dn.net/?f=%28S%3Ds_1%2Bs_2%2Bs_3%2B......%2Bs_n%29)
![S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....\frac{1}{n+1}-\frac{1}{n+2}\\\\](https://tex.z-dn.net/?f=S%3D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B4%7D%2B%5Cfrac%7B1%7D%7B4%7D-%5Cfrac%7B1%7D%7B5%7D%2B.....%5Cfrac%7B1%7D%7Bn%2B1%7D-%5Cfrac%7B1%7D%7Bn%2B2%7D%5C%5C%5C%5C)
![=\frac{1}{2}-\frac{1}{5}+\frac{1}{n+1}-\frac{1}{n+2}\\\\](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B1%7D%7Bn%2B1%7D-%5Cfrac%7B1%7D%7Bn%2B2%7D%5C%5C%5C%5C)
When ![s_n \ \ dt_{n \to 0}](https://tex.z-dn.net/?f=s_n%20%5C%20%5C%20dt_%7Bn%20%5Cto%200%7D)
![=\frac{1}{2}-\frac{1}{5}+\frac{1}{0+1}-\frac{1}{0+2}\\\\=\frac{1}{2}-\frac{1}{5}+\frac{1}{1}-\frac{1}{2}\\\\= 1 -\frac{1}{5}\\\\= \frac{5-1}{5}\\\\= \frac{4}{5}\\\\](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B1%7D%7B0%2B1%7D-%5Cfrac%7B1%7D%7B0%2B2%7D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B5%7D%2B%5Cfrac%7B1%7D%7B1%7D-%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D%201%20-%5Cfrac%7B1%7D%7B5%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B5-1%7D%7B5%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B4%7D%7B5%7D%5C%5C%5C%5C)
![\boxed{\text{In point 1:} \sum ^{\infty}_{k = 1} \frac{1}{k+1} - \frac{1}{k+2} =\frac{4}{5}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctext%7BIn%20point%201%3A%7D%20%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7Bk%2B1%7D%20-%20%5Cfrac%7B1%7D%7Bk%2B2%7D%20%3D%5Cfrac%7B4%7D%7B5%7D%7D)
In point 2: ![\sum ^{\infty}_{k = 1} \frac{1}{(k+6)(k+7)}](https://tex.z-dn.net/?f=%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7B%28k%2B6%29%28k%2B7%29%7D)
when,
![k= 1 \to s_1 = \frac{1}{(1+6)(1+7)}\\\\](https://tex.z-dn.net/?f=k%3D%201%20%5Cto%20%20s_1%20%3D%20%5Cfrac%7B1%7D%7B%281%2B6%29%281%2B7%29%7D%5C%5C%5C%5C)
![= \frac{1}{7 \times 8}\\\\= \frac{1}{56}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B7%20%5Ctimes%208%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B56%7D)
![k= 2 \to s_1 = \frac{1}{(2+6)(2+7)}\\\\](https://tex.z-dn.net/?f=k%3D%202%20%5Cto%20%20s_1%20%3D%20%5Cfrac%7B1%7D%7B%282%2B6%29%282%2B7%29%7D%5C%5C%5C%5C)
![= \frac{1}{8 \times 9}\\\\= \frac{1}{72}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B8%20%5Ctimes%209%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B72%7D)
![k= 3 \to s_1 = \frac{1}{(3+6)(3+7)}\\\\](https://tex.z-dn.net/?f=k%3D%203%20%5Cto%20%20s_1%20%3D%20%5Cfrac%7B1%7D%7B%283%2B6%29%283%2B7%29%7D%5C%5C%5C%5C)
![= \frac{1}{9 \times 10} \\\\ = \frac{1}{90}\\\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B9%20%5Ctimes%2010%7D%20%5C%5C%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B90%7D%5C%5C%5C%5C)
![k= n^ \to s_n = \frac{1}{(n+6)(n+7)}\\\\](https://tex.z-dn.net/?f=k%3D%20n%5E%20%20%5Cto%20%20s_n%20%3D%20%5Cfrac%7B1%7D%7B%28n%2B6%29%28n%2B7%29%7D%5C%5C%5C%5C)
calculate the sum:![S= s_1+s_2+s_3+s_n\\](https://tex.z-dn.net/?f=S%3D%20s_1%2Bs_2%2Bs_3%2Bs_n%5C%5C)
![S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(n+6)(n+7)}\\\\](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B1%7D%7B56%7D%2B%5Cfrac%7B1%7D%7B72%7D%2B%5Cfrac%7B1%7D%7B90%7D....%2B%5Cfrac%7B1%7D%7B%28n%2B6%29%28n%2B7%29%7D%5C%5C%5C%5C)
when ![s_n \ \ dt_{n \to 0}](https://tex.z-dn.net/?f=s_n%20%5C%20%5C%20dt_%7Bn%20%5Cto%200%7D)
![S= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{(0+6)(0+7)}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}....+\frac{1}{6 \times 7}\\\\= \frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{42}\\\\=\frac{45+35+28+60}{2520}\\\\=\frac{168}{2520}\\\\=0.066](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B1%7D%7B56%7D%2B%5Cfrac%7B1%7D%7B72%7D%2B%5Cfrac%7B1%7D%7B90%7D....%2B%5Cfrac%7B1%7D%7B%280%2B6%29%280%2B7%29%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B56%7D%2B%5Cfrac%7B1%7D%7B72%7D%2B%5Cfrac%7B1%7D%7B90%7D....%2B%5Cfrac%7B1%7D%7B6%20%5Ctimes%207%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B56%7D%2B%5Cfrac%7B1%7D%7B72%7D%2B%5Cfrac%7B1%7D%7B90%7D%2B%5Cfrac%7B1%7D%7B42%7D%5C%5C%5C%5C%3D%5Cfrac%7B45%2B35%2B28%2B60%7D%7B2520%7D%5C%5C%5C%5C%3D%5Cfrac%7B168%7D%7B2520%7D%5C%5C%5C%5C%3D0.066)
![\boxed{\text{In point 2:} \sum ^{\infty}_{k = 1} \frac{1}{(n+6)(n+7)} = 0.066}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctext%7BIn%20point%202%3A%7D%20%5Csum%20%5E%7B%5Cinfty%7D_%7Bk%20%3D%201%7D%20%5Cfrac%7B1%7D%7B%28n%2B6%29%28n%2B7%29%7D%20%3D%200.066%7D)
Answer:
![\huge\boxed{x\neq4\to x\in\mathbb{R}\backslash\{4\}}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7Bx%5Cneq4%5Cto%20x%5Cin%5Cmathbb%7BR%7D%5Cbackslash%5C%7B4%5C%7D%7D)
Step-by-step explanation:
![\dfrac{x-3}{2x-8}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx-3%7D%7B2x-8%7D)
We know: the denominator must be different than 0.
Therefore
<em>add 8 to both sides</em>
![2x-8+8\neq0+8](https://tex.z-dn.net/?f=2x-8%2B8%5Cneq0%2B8)
<em>divide both sides by 2</em>
![\dfrac{2x}{2}=\dfrac{8}{2}\\\\x\neq4](https://tex.z-dn.net/?f=%5Cdfrac%7B2x%7D%7B2%7D%3D%5Cdfrac%7B8%7D%7B2%7D%5C%5C%5C%5Cx%5Cneq4)
In fraction 1/2 in decimal 2.5