Answer:
Keenan's z-score was of 0.61.
Rachel's z-score was of 0.81.
Step-by-step explanation:
Z-score:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Keenan scored 80 points on an exam that had a mean score of 77 points and a standard deviation of 4.9 points.
This means that
So
Keenan's z-score was of 0.61.
Rachel scored 78 points on an exam that had a mean score of 75 points and a standard deviation of 3.7 points.
This means that . So
Rachel's z-score was of 0.81.
The intercepts for this equation is (1/2,-2) I hope this helps
The answer would be either 6 or -2
Answer:
0.10
Step-by-step explanation:
move the degree over 2 spaces and turn it into a decimal