Answer:
565.2
Step-by-step explanation:
565.2
Answer: The equation is hard to read, it's formatted kinds weirdly
But the song is It Roars
lol
Answer:
The height of the second cone is 2 <em>h</em>₁.
Step-by-step explanation:
The volume of a cone is:

The volume of the first cone is, <em>V</em>₁ = 5 in³.
The volume of the second cone is, <em>V</em>₂ = 10 in³.
The two cones have the same base diameters.
This implies that the two radii are same, i.e. <em>r</em>₁ = <em>r</em>₂.
Compute the height of the second cone as follows:





Thus, the height of the second cone is 2 <em>h</em>₁.
Answer:
Area of shaded region ≈ 192.42
Step-by-step explanation:
21/2 = radius
radius = 10.5 m
A = πr squared
Area of shaded region≈346.36
10.5 - 3.5 = 7
Area of unshaded region ≈ 153.94
346.36 - 153.94 = 192.42
First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4