Explanation:
The given data is as follows.
T =
= (120 + 273.15)K = 393.15 K,
As it is given that it is an equimolar mixture of n-pentane and isopentane.
So,
= 0.5 and
= 0.5
According to the Antoine data, vapor pressure of two components at 393.15 K is as follows.
(393.15 K) = 9.2 bar
(393.15 K) = 10.5 bar
Hence, we will calculate the partial pressure of each component as follows.

= 
= 4.6 bar
and, 
= 
= 5.25 bar
Therefore, the bubble pressure will be as follows.
P =
= 4.6 bar + 5.25 bar
= 9.85 bar
Now, we will calculate the vapor composition as follows.

= 
= 0.467
and, 
= 
= 0.527
Calculate the dew point as follows.
= 0.5,
= 0.5


= 0.101966
P = 9.807
Composition of the liquid phase is
and its formula is as follows.

= 
= 0.5329

= 
= 0.467
Answer:
[Br₂] = 1.25M
Explanation:
2NO (g) + Br₂ (g) ⇄ 2NOBr (g)
Eq 0.80M ? 0.80M
That's the situation told, in the statement.
Let's make the expression for Kc
Kc = [NOBr]² / [Br₂] . [NO]²
Kc = 0.80² / [Br₂] . [0.80]²
0.80 = 1 / [Br₂]
[Br₂] = 1 / 0.80 → 1.25
Answer:
The given electronic configuration is long hand notation.
Explanation:
Long-hand notation of representing electronic configuration is defined as the arrangement of total number of electrons that are present in an element.
Noble-gas notation of representing electronic configuration is defined as the arrangement of valence electrons in the element. The core electrons are represented as the previous noble gas of the element that is considered.
The given electronic configuration of potassium (K):
The above configuration has all the electrons that are contained in the nucleus of an element. Thus, this configuration is a long-hand notation.
It would be A bc carbon is NOT usually a product. You can find out more about the by searching combustion reactions, then u should be able to answer the questions on your own.