To be floating, the gravity force of the iceberg should be same as the buoyancy force that result from the difference of the ice and water density.
The density of ice is 920 and water is 1030, then the difference should be: 1030kg/m3-920kg/m3= 110kg/m3
Let say that the volume of ice below the water is volume1 and the volume above the water(exposed volume) is volume2.
You can get this equation
volume1+volume2= 100%
volume1= 100%- volume2
Insert it into the buoyancy and gravity force will result
buoyancy=gravity
110kg/m3*volume1= 920kg/m3 *volume2
110kg/m3*(100%- volume2)= 920kg/m3 *volume2
110kg/m3 - 110kg/m3*volume2= 920kg/m3 *volume2
110kg/m3 = 1030kg/m3 *volume2
volume2= 110/1030= 0.1067= 10.7%
Answer:
1. ¹⁰₄Be ---> ¹⁰₅B + ⁰₋₁β
2. ³⁴₁₄Be ---> ³⁴₁₅P + ⁰₋₁β
3. ¹⁹²₇₈Pt -----> ¹⁹⁰₇₆Os + ⁴₂α
4. ²⁸₁₂Mg ---> ²⁸₁₃Al + ⁰₋₁β
Explanation:
1. In the first equation, Beryllium-10 isotope undergoes beta-decay, emitting a beta-particle to form boron-10 isotope. The balanced nuclear equation is given below:
¹⁰₄Be ---> ¹⁰₅B + ⁰₋₁β
2. In this reaction, silicon-34 isotope undergoes beta-decay, emitting a beta-particle to form phosphorus-34 isotope. The balanced nuclear equation is given below:
³⁴₁₄Be ---> ³⁴₁₅P + ⁰₋₁β
3. In this equation, platinum-192 isotope undergoes alpha-particle decay emitting an alpha-particle to form osmium-190 isotope. The balanced nuclear equation is given below:
¹⁹²₇₈Pt -----> ¹⁹⁰₇₆Os + ⁴₂α
4. In this equation, magnesium-28 isotope undergoes beta-decay, emitting a beta-particle to form aluminum-28 isotope. The balanced nuclear equation is given below:
²⁸₁₂Mg ---> ²⁸₁₃Al + ⁰₋₁β
Answer:
all of the above
Explanation:
a hypothesis is indeed the second step. it also can be tested since you made it beforehand. it also is supposed to be educated. so all of the above.
Answer: Frost weathering is a collective term for several mechanical weathering processes induced by stresses created by the freezing of water into ice.