Is this the whole answer?
Ethanoic (Acetic) acid is a weak acid and do not dissociate fully. Therefore its equilibrium state has to be considered here.

In this case pH value of the solution is necessary to calculate the concentration but it's not given here so pH = 2.88 (looked it up)
pH = 2.88 ==>
![[H^{+}]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D)
=

= 0.001

The change in Concentration Δ
![[CH_{3}COOH]](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D)
= 0.001

CH3COOH H+ CH3COOH
Initial

0 0
Change

-0.001 +0.001 +0.001
Equilibrium

- 0.001 0.001 0.001
Since the

value is so small, the assumption
![[CH_{3}COOH]_{initial} = [CH_{3}COOH]_{equilibrium}](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D_%7Binitial%7D%20%3D%20%5BCH_%7B3%7DCOOH%5D_%7Bequilibrium%7D)
can be made.
![k_{a} = [tex]= 1.8*10^{-5} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{0.001^{2}}{x}](https://tex.z-dn.net/?f=%20k_%7Ba%7D%20%3D%20%5Btex%5D%3D%201.8%2A10%5E%7B-5%7D%20%20%3D%20%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D%20%3D%20%20%5Cfrac%7B0.001%5E%7B2%7D%7D%7Bx%7D%20)
Solve for x to get the required concentration.
note: 1.)Since you need the answer in 2SF don&t round up values in the middle of the calculation like I've done here.
2.) The ICE (Initial, Change, Equilibrium) table may come in handy if you are new to problems of this kind
Hope this helps!
8.3 × 106 - trust me, it's actually right. You can use the calculator to see if I'm correct. Punch in <span>8.3 × 106 = 6.6</span>
The primary form of heat transfer taking place within the water bottle will be convection, which is the natural circulation of fluid due to density differences arising from temperature differences.
The second form is dependent on how the heating is taking place. If the bottle is out in sunlight, the form of heat transfer is radiation from the sun's rays. If heat is directly being applied to it, then the form is conduction, which occurs in solids and through direct contact.