The <em>speed</em> intervals such that the mileage of the vehicle described is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h]
<h3>How to determine the range of speed associate to desired gas mileages</h3>
In this question we have a <em>quadratic</em> function of the <em>gas</em> mileage (g), in miles per gallon, in terms of the <em>vehicle</em> speed (v), in miles per hour. Based on the information given in the statement we must solve for v the following <em>quadratic</em> function:
g = 10 + 0.7 · v - 0.01 · v² (1)
An effective approach consists in using a <em>graphing</em> tool, in which a <em>horizontal</em> line (g = 20) is applied on the <em>maximum desired</em> mileage such that we can determine the <em>speed</em> intervals. The <em>speed</em> intervals such that the mileage of the vehicle is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h].
To learn more on quadratic functions: brainly.com/question/5975436
#SPJ1
Step-by-step explanation:
Parallelogram
Reflect y=-1 ;x changes sign
Answer:
P = (2, 7)
Step-by-step explanation:
You want to find coordinates of P on segment AB such that P is 3/4 is of the way from A to B.
<h3>Equation for P</h3>
For some fraction q of the distance from A to B, the point P that lies at that fraction of the distance is given by ...
P = A +q(B -A) = (1 -q)A +qB
<h3>Application</h3>
For q = 3/4, the location of P is ...
P = (1 -3/4)A + 3/4B = (A +3B)/4
Using the given point coordinates, we have ...
P = ((-4, -2) +3(4, 10))/4 = (-4 +12, -2 +30)/4 = (8, 28)/4
P = (2, 7)