500-250=250 so if there were 50 more cheeseburgers it would be 300 cheeseburgers so they would of have to sold 200 hamburgers on Wednesday to have sold 500 burgers in total do the answer is 200 hamburgers
To find:
An irrational number that is greater than 10.
Solution:
Irritation number: It cannot be expression in the form of
, where,
are integers.
For example:
.
We know that square of 10 is 100. So, square root of any prime number is an example of an irrational number that is greater than 10.
First prime number after 100 is 101.
Required irrational number 
Therefore,
is an irrational number that is greater than 10.
Answer:
If m is nonnegative (ie not allowed to be negative), then the answer is m^3
If m is allowed to be negative, then the answer is either |m^3| or |m|^3
==============================
Explanation:
There are two ways to get this answer. The quickest is to simply divide the exponent 6 by 2 to get 6/2 = 3. This value of 3 is the final exponent over the base m. Why do we divide by 2? Because the square root is the same as having an exponent of 1/2 = 0.5, so
sqrt(m^6) = (m^6)^(1/2) = m^(6*1/2) = m^(6/2) = m^3
This assumes that m is nonnegative.
---------------------------
A slightly longer method is to break up the square root into factors of m^2 each and then apply the rule that sqrt(x^2) = x, where x is nonnegative
sqrt(m^6) = sqrt(m^2*m^2*m^2)
sqrt(m^6) = sqrt(m^2)*sqrt(m^2)*sqrt(m^2)
sqrt(m^6) = m*m*m
sqrt(m^6) = m^3
where m is nonnegative
------------------------------
If we allow m to be negative, then the final result would be either |m^3| or |m|^3.
The reason for the absolute value is to ensure that the expression m^3 is nonnegative. Keep in mind that m^6 is always nonnegative, so sqrt(m^6) is also always nonnegative. In order for sqrt(m^6) = m^3 to be true, the right side must be nonnegative.
Example: Let's say m = -2
m^6 = (-2)^6 = 64
sqrt(m^6) = sqrt(64) = 8
m^3 = (-2)^3 = -8
Without the absolute value, sqrt(m^6) = m^3 is false when m = -2
Answer:

Step-by-step explanation:
According to PYTHAGORAS Theorem,
let the Hypotenuse be x

Answer: ∡RSQ and ∡TSQ
Supplementary angles are angles that add up to 180 degrees. We can see in the picture that both angles are located on the same line, and no other angles are involved, so they must equal 180.
We can also use the process of elimination:
- ∡RSQ and ∡UVS are congruent because they are consecutive angles.
- ∡RSQ and ∡WVX are also congruent because they are alternate exterior angles.
- ∡RSQ and ∡TSV are also congruent because they are vertical angles.