Answer:
t = 2.2 s
Explanation:
Given that,
A person observes a firework display for A safe distance of 0.750 km.
d = 750 m
The speed of sound in air, v = 340 m/s
We need to find the between the person see and hear a firework explosion. let it is t. So, using the formula of speed.
So, the required time is 2.2 seconds.
do not obey ohm's law so it's a I believe
Answer:
a)30.14 rad/s2
b)43.5 rad/s
c)60633 J
d)42 kW
e)84 kW
Explanation:
If we treat the propeller is a slender rod, then its moments of inertia is
a. The angular acceleration is Torque divided by moments of inertia:
b. 5 revolution would be equals to rad, or 31.4 rad. Since the engine just got started
c. Work done during the first 5 revolution would be torque times angular displacement:
d. The time it takes to spin the first 5 revolutions is
The average power output is work per unit time
or 42 kW
e.The instantaneous power at the instant of 5 rev would be Torque times angular speed at that time:
or 84 kW
Answer:
a. 120 W
b. 28.8 N
Explanation:
To a good approximate, the only external force that does work on a cyclist moving on level ground is the force of air resistance. Suppose a cyclist is traveling at 15 km/h on level ground. Assume he is using 480 W of metabolic power.
a. Estimate the amount of power he uses for forward motion.
b. How much force must he exert to overcome the force of air resistance?
(a)
He is 25% efficient, therefore the cyclist will be expending 25% of his power to drive the bicycle forward
Power = efficiency X metabolic power
= 0.25 X 480
= 120 W
(b)
power if force times the velocity
P = Fv
convert 15 km/h to m/s
v = 15 kmph = 4.166 m/s
F = P/v
= 120/4.166
= 28.8 N
definition of terms
power is the rate at which work is done
force is that which changes a body's state of rest or uniform motion in a straight line
velocity is the change in displacement per unit time.
I’m pretty sure
Part 1; C
Part 2; C
Not 100% sure tho :)