We are told that KOH is being used to completely neutral H₂SO₄ according to the following reaction:
KOH + H₂SO₄ → H₂O + KHSO₄
If KOH can completely neutralize H₂SO₄, then there must be an equal amount of moles of each as they are in a 1:1 ratio:
0.025 L x 0.150 mol/L = .00375 mol KOH
0.00375 mol KOH x 1 mole H₂SO₄/1 mole KOH = 0.00375 mol H₂SO₄
We are told we have 15 mL of H₂SO₄ initially, so now we can find the original concentration:
0.00375 mol / 0.015 L = 0.25 mol/L
The concentration of H₂SO₄ being neutralized is 0.25 M.
Answer:
Electron configuration: [He] 2s²2p⁴
Explanation:
Reaction:

Magnesium is a stronger reducing agent than copper and is thus able to reduce copper(II) oxide.
Products of the reaction: Magnesium oxide and metallic copper.
Answer:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
Explanation:
How does the concept of conservation of mass apply to chemical reactions? the reactants and products have exactly the same atoms. the reactants and products have exactly the same molecules. the change in the amount of matter is equal to the change in energy.
can someone help me with my qustions?
Answer:
Waxy leaves protect the strangler fig from drying winds and sunlight that it is exposed to high in the canopy. Perhaps the most amazing part of this extraordinary tree is its flower. What we think of as the fruit is really a hollow, flower-bearing structure called a cyconia.