<span>adding a unit to move a susceptible group enough to prevent metabolism is known as shifting.
These phenomena happen especially for liposoluble organism circulating in blood like drugs an hormones.
these molecules circulating blood can be divided into two forms :
The free-form: which is the active part, it circulates freely in the blood, but are easily metabolised.
The bound form: it can be bound to other molecules from the organisms depending on its affinity like proteins (albumin, glycoproteins). this form is not active but is prevented from metabolism.
Competition for bounding proteins can happen between two drugs for example. If they have a different degree of affinity for proteins, then the most affine will displace the less affine from the protein and bound it, and that is call shifting</span>
Answer:
D.)
Explanation:
(I know this, by experience :|)
One of them is definitely hun
<span>My pea plant has an unknown genotype for flowers, whether it has two dominant traits for white flowers (WW) or one dominant and one recessive (Ww) leading to white flowers; therefore I am doing a testcross in order to determine the genotype of my pea plant. The best plant to do this with is one that has a phenotype of purple flowers (ww) - that is, it is homozygous for the recessive trait.
If I use a homozygous recessive plant, I know exactly what its genotype is. I don't have to worry about whether it's got one or two dominant alleles; I know that at least half of my alleles are going to be the recessive w.
This makes identifying the offspring's genotype very simple. If I find that the offspring have at least some purple flowers among them, I know that my original plant had to be Ww; that is it had to have one dominant and one recessive allele for the flower color gene. If, however, all of the offspring are white flowers, I know that my original pea plant had both dominant alleles (WW).</span>