1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
10

The first three terms of a sequence are given. Round to the nearest thousandth (if necessary).

Mathematics
1 answer:
Mrac [35]3 years ago
8 0
It seems like it is dividing by 4 every time.
Then, the answer is 1/4/4/4 which is approximately 0.016
You might be interested in
If A denotes some​ event, what does Upper A overbar ​denote? If ​P(A)equals0.999​, what is the value of ​P(Upper A overbar​)? Wh
meriva

Answer:

<h3>The event P(\overline{A}) denotes the complement of event A.</h3><h3>The value of P(\overline{A}) is 0.001</h3>

Step-by-step explanation:

Given that A denotes some event .

And also given that P(A)=0.999

<h3>To find the value of P(\overline{A}) :</h3>

Here the event P(\overline{A}) denotes the complement of event A Therefore P(\overline{A}) contains all the events that does not occur in A.

We know that the total probability is 1

So we have that

P(A)+P(\overline{A})=1

P(\overline{A})=1 -P(A)

=1-0.999

=0.001

Hence the complement of event A is P(\overline{A})=0.001

<h3>Therefore the value is P(\overline{A})=0.001</h3>

6 0
3 years ago
vani is building a rectangular play area. The length of the play area is 7.5 meters. The width of the play area is 5.3 meters. I
horsena [70]
39.75 square meters
5 0
3 years ago
Q28. In a sale, the normal price of a book is reduced by 30%. The sale price of the book is £2.80 Work out the normal price of t
lisov135 [29]

Answer:

0.90

Step-by-step explanation:

090. = 0.90

30/2.80

28

00

8 0
3 years ago
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
Find the length of the segment indicated.
Goryan [66]

Answer:

I think the answer is 12.5

4 0
3 years ago
Other questions:
  • A business has $11,080 to spend on new laptops and tablet computers for its salespeople. The laptops cost $515 each. The tablets
    8·2 answers
  • Apply the distributive property to factor out the greatest common factor. 35+50=
    8·1 answer
  • Including a 5 percent sales tax, a hotel charges $147 per night. What’s the cost without the tax
    10·1 answer
  • First, complete the table of x- and y-coordinates
    12·1 answer
  • 6) En El Salvador el presupuesto de gastos para el año 2020 fue de 500 millones dos ciento cincuenta mil dólares, de los que le
    15·1 answer
  • The balance of a shop owner’s bank account is
    15·2 answers
  • A 12-ounce bag of chips costs $2.88. What is the unit rate per ounce of chips A $0.17 O B. $0.24 OC. $0.25 OD $0.42​
    14·1 answer
  • Se necesita comprar 85 saleros para su restaurante. Si los saleros vienen empacados en presentaciones de 2,3 y 5 unidades, cual
    11·1 answer
  • jamie deposits $900 into a savings account that pays 2% interest. if he leaves the money in the account for 3 years, how much in
    15·1 answer
  • Solve the quadratic equations by completing the square. <br> x^2-4x=-1
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!