Answer:
Here's what I get
Explanation:
(a) Intermediates
The three structures below represent one contributor to the resonance-stabilized intermediate, in which the lone pair electrons on the heteroatom are participating (the + charge on the heteroatoms do not show up very well).
(b) Relative Stabilities
The relative stabilities decrease in the order shown.
N is more basic than O, so NH₂ is the best electron donating group (EDG) and will best stabilize the positive charge in the ring. However, the lone pair electrons on the N in acetanilide are also involved in resonance with the carbonyl group, so they are not as available for stabilization of the ring.
(c) Relative reactivities
The relative reactivities would be
C₆H₅-NH₂ > C₆H₅-OCH₃ > C₆H₅-NHCOCH₃
A valid Lewis structure of IF3 cannot be drawn without violating the octet rule.
Answer: IF3 (Iodine Trifluoride)
This is because, I (Iodine) and F (Fluorine) both have odd number of valence electrons (7) which also means that there are too many valence electrons in the valence shell.
Answer:
2NaOH (aq) + CaCl2 (aq) -> 2NaCl(aq) + Ca(OH)2(s)
Formula of precipitate: Ca(OH)2 <em>(s)</em>
Explanation:
First, we do the double replacement reaction to determine our chemical equation between the reactants and products. Once we have our products, with a solubility chart (I added one below) we can determine which of the products is soluble or insoluble.
In this case NaCl is soluble or aqueous (meaning it can dissolve in water) and Ca(OH)2 is insoluble (meaning that when the reactions takes place, these two will form a solid/precipitate)
Answer:
that the poem needs to be finished heh pog
Explanation:
Answer: 9.09 %
Explanation:
To calculate the percentage concentration by volume, we use the formula:
Volume of ethanol (solute) = 30 ml
Volume of water (solvent) = 300 ml
Volume of solution= volume of solute + volume of solution = 30+ 300 = 330 ml
Putting values in above equation, we get:
Hence, the volume percent of solution will be 9.09 %.