Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
Answer:

Explanation:
Hello there!
In this case, when considering weak acids which have an associated percent dissociation, we first need to set up the ionization reaction and the equilibrium expression:
![HA\rightleftharpoons H^++A^-\\\\Ka=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=HA%5Crightleftharpoons%20H%5E%2B%2BA%5E-%5C%5C%5C%5CKa%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Now, by introducing x as the reaction extent which also represents the concentration of both H+ and A-, we have:
![Ka=\frac{x^2}{[HA]_0-x} =10^{-4.74}=1.82x10^{-5}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7Bx%5E2%7D%7B%5BHA%5D_0-x%7D%20%3D10%5E%7B-4.74%7D%3D1.82x10%5E%7B-5%7D)
Thus, it is possible to find x given the pH as shown below:

So that we can calculate the initial concentration of the acid:
![\frac{(1.82x10^{-5})^2}{[HA]_0-1.82x10^{-5}} =1.82x10^{-5}\\\\\frac{1.82x10^{-5}}{[HA]_0-1.82x10^{-5}} =1\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B%281.82x10%5E%7B-5%7D%29%5E2%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1.82x10%5E%7B-5%7D%5C%5C%5C%5C%5Cfrac%7B1.82x10%5E%7B-5%7D%7D%7B%5BHA%5D_0-1.82x10%5E%7B-5%7D%7D%20%3D1%5C%5C%5C%5C)
![[HA]_0=3.64x10^{-5}M](https://tex.z-dn.net/?f=%5BHA%5D_0%3D3.64x10%5E%7B-5%7DM)
Therefore, the percent dissociation turns out to be:
![\% diss=\frac{x}{[HA]_0}*100\% \\\\\% diss=\frac{1.82x10^{-5}M}{3.64x10^{-5}M}*100\% \\\\\% diss = 50\%](https://tex.z-dn.net/?f=%5C%25%20diss%3D%5Cfrac%7Bx%7D%7B%5BHA%5D_0%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%3D%5Cfrac%7B1.82x10%5E%7B-5%7DM%7D%7B3.64x10%5E%7B-5%7DM%7D%2A100%5C%25%20%5C%5C%5C%5C%5C%25%20diss%20%3D%2050%5C%25)
Best regards!
The net ionic equation of the reaction could be determined by cancelling out the like ions between both sides of the reaction. These ions are called spectator ions. They are called as such because they do not actively participate in the reaction. The spectator ions are Na+ and Cl-. When you cancel those, the equation would become letter D.
The correct answer should be D :)