Answer:
68%
Step-by-step explanation:
The increase is (62 - 37), or 25, ounces. Comparing this to the original quantity (37 oz), we divide 25 oz. by 37 oz., obtaining 0.676 (a ratio). Multiplying this ratio by 100%, we get 68% (to the nearest percent).
Answer:
1. 90% 2. 10% 3. 50%
Step-by-step explanation:
Standard Deviation (σ) = 50 days
Average/Mean (μ) = 300days
Probability that it would last more than 300 days = P(Bulb>300 days)
We will assume there are 365 days in a year.
P(Bulb>300 days) implies that the bulb would
Using the normal equation;
z = standard/normal score = (x-μ)/σ where x is the value to be standardized
P(Bulb>300 days) implies x = 365 days
Therefore z = (365-300)/50 = 1.3
Using the normal graph for z=1.3, probability = 90%
2. P(Bulb<300 days) = 1 - P(Bulb>300 days)\
P(Bulb<300 days) = 1 - 0.9
P(Bulb<300 days) = 10%
3. P(Bulb=300 days) implies z=0 since x=300
Using the normal graph for z=0, probability =50%
63%
First, we have to take 20.00 - 7.40 which gets us 12.60.
Then, we use the formula where we put the 12.60 on top of a fraction bar, and the 20.00 on bottom.
We do 12.60 x 100 which makes 1260.
Lastly, we divide that by the 20.00 which gets us 63.
So, Julie has 63% of her money left.
I hope this helped!!!
The correct option is "d".
Given that L = 0.8T²
length of pendulum = 30ft
L= 0.8T²
30 = 0.8T²
T² = 30 / 0.8
T² = 37.5
T = √37.5 = 6.1 seconds
<span>So, 6.1 is the closest to the period in seconds for a pendulum that is 30 ft long.</span>
To answer this question, we need to recall that: "the diagonals of a rectangle bisect each other"
Thus, if we assign the point of intersection of the two diagonals in the rectangle as point O, we can say that the triangle OQR is an "isosceles triangle". Note that this is because the lengths OR and OQ are equal since we know that: "the diagonals of a rectangle bisect each other". See the below diagram for clarity.
Now, we have to recall that:
- the base angles of any isosceles triangle are equal. This is a fact, and this means that the angles
- also the sum of all the angles in any triangle is 180 degrees
Now, considering the isosceles triangle OQR, we have that:

Now, since the figure already shows that angle
Now, since we have established that the base angles
we can now solve the above equation for m<2 as follows:

Therefore, the correct answer is: option D