Answer: from the information given, the velocity of the water will decrease but the pipe size will remain the same.
This can be proved with bernoulli's equation.
Explanation: careful analysis of the system using bernoulli's equation of flow is shown in the image attached
Well they could go down a hill to gain more kinetic energy.
Explanation:
Given that,
Electrostatic force, 
Distance, 
(a)
, q is the charge on the ion


(b) Let n is the number of electrons are missing from each ion. It can be calculated as :


n = 2
Hence, this is the required solution.
Answer:
a) 0.568 kg
b) 474 kg/m³
Explanation:
Given:
Inner radius = 8.82 cm = 0.0882 m
Outer radius = 9.91 cm = 0.0991 m
Density of the liquid = 948.00 Kg/m³
a) The volume of the sphere =
or
volume of sphere = 0.0012 m³
also, volume of half sphere =
or
volume of half sphere =
or
Volume of half sphere =0.0006 m³
Now, from the Archimedes principle
Mass of the sphere = Weight of the volume of object submerged
or
Mass of the sphere = 0.0006× 948.00 = 0.568 kg
b) Now, density =
or
Density =
or
Density = 474 kg/m³
Answer:
<em> B.0</em>
Explanation:
Change in momentum: This is defined as the product of mass and change in velocity of a body. or it can be defined as the product of force and time of a body. The fundamental unit of change in momentum is kg.m/s
Change in momentum = M(V-U)......................... Equation 1
where M = mass of the ball, V = final velocity of the ball, U = initial velocity of the ball.
Let: M = m kg and V = U = v m/s
Substituting these values into equation 1
Change in momentum = m(v-v)
Change in momentum = m(0)
Change in momentum = 0 kg.m/s
<em>Therefore the momentum of the ball has not changed.</em>
<em>The right option is B.0</em>