Answer:
<em>There are 72 crayons in the box</em>
Step-by-step explanation:
<u>Fractions</u>
To solve this problem we'll manage numbers as fractions to keep the precision up to the end of it.
Lynn has a box of crayons. It's given 4/9 of the crayons are blue. The remaining crayons are:

From that portion, 65% are red, or equivalently, 35% are yellow.
We write 35% as a fraction:

Thus, the portion of yellow crayons is:

This fraction of x crayons is equal to 14, thus:

x = 72
There are 72 crayons in the box
Answer:
7. r = -5
8. x = -1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define</u>
r + 2 - 8r = -3 - 8r
<u>Step 2: Solve for </u><em><u>r</u></em>
- Combine like terms: -7r + 2 = -3 - 8r
- Add 8r to both sides: r + 2 = -3
- Subtract 2 on both sides: r = -5
<u>Step 3: Check</u>
<em>Plug in r into the original equation to verify it's a solution.</em>
- Substitute in <em>r</em>: -5 + 2 - 8(-5) = -3 - 8(-5)
- Multiply: -5 + 2 + 40 = -3 + 40
- Add: -3 + 40 = -3 + 40
- Add: 37 = 37
Here we see that 37 does indeed equal 37.
∴ r = -5 is a solution of the equation.
<u>Step 4: Define equation</u>
-4x = x + 5
<u>Step 5: Solve for </u><em><u>x</u></em>
- Subtract <em>x</em> on both sides: -5x = 5
- Divide -5 on both sides: x = -1
<u>Step 6: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: -4(-1) = -1 + 5
- Multiply: 4 = -1 + 5
- Add: 4 = 4
Here we see that 4 does indeed equal 4.
∴ x = -1 is a solution of the equation.
Answer:
35.25
Step-by-step explanation:
30 miles for a single gallon.
first we find out how many gallons would be used.
number of gallons = 1020/30
gallons = 34.
and since 1 gallon costs $4.06
34 gallons would cost = 34 x 4.06 = $138.04
<span>The graph is attached.
Explanation:We can use the x- and y-intercepts to graph. The x-intercept of the first equation is 8, and the y-intercept is 8. The x-intercept of the second equation is -2, and the y-intercept is 2.
<span>
x-intercepts are where the data crosses the x-axis. At every one of these points, the y-coordinate will be 0; therefore we can substitute 0 for y and solve to get the value of the x-intercept.
For the first equation, we would have
8x+8(0)=64
8x=64.
Divide both sides by 8:
8x/8 = 64/8
x=8.
For the second equation,
2x-2(0)=-4
2x=-4.
Divide both sides by 2:
2x/2 = -4/2
x=-2.
y-intercepts are where the data crosses the y-axis. At every one of these points, the x-coordinate will be 0; therefore we can substitute 0 for x and solve to get the value of the y-intercept.
For the first equation,
8(0)+8y=64
8y=64.
Divide both sides by 8:
8y/8 = 64/8
y=8.
For the second equation,
2(0)-2y=-4
-2y=-4.
Divide both sides by -2:
-2y/-2 = -4/-2
y=2.
Plot these points for both equations and connect them to draw the line.</span></span>