a)
, 
The work done by the student in each trial is equal to the gravitational potential energy gained by the student:

where
m = 68 kg is the mass of the student
g = 9.8 m/s^2 is the acceleration of gravity
is the gain in height of the student
For the first student,
, so the work done is

The second student runs up to the same height (3.5 m), so the work done by the second student is the same:

2)
, 
The power exerted by each student is given by

where
W is the work done
t is the time taken
For the first student,
and
, so the power exerted is

For the second student,
and
, so the power exerted is

Yes, in broader terms for people who actually study this, this is called biomechanics. Bio refers to the human body and it moving, while the physics part comes in when a ball is thrown for example and you want to know how far it is thrown.
Answer:
0.25 kg m^2
Explanation:
mass of each , m = 500 g = 0.5 kg
distance, r = 50 cm = 0.5 m
Moment of inertia about the axis passing through one corner and perpendicular to the plane of triangle
I = mr^2 + mr^2
I = 2 mr^2
I = 2 x 0.5 x 0.5 x 0.5
I = 0.25 kgm^2
Answer:
à in unit vector notation = 12.26485i + 7.54539j
B in unit vector notation = 16.3516i + 3.11529j
Explanation:
The detailed steps and calculation is shown in the attachment.
Its A: the use of hydropower often changes the natural flow of water through an ecosystem
add me on robloxs <span />