1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
2 years ago
12

Advantages of writing very large and very small numbers in the terms of power of ten​

Physics
2 answers:
Papessa [141]2 years ago
6 0

Answer:

Large numbers might create fuse, be confusing and if you miss even one of the zeros it is a very big deal in a situation when you are making a spaceship. Hope this answers your questions :) Merry Christmas. Have fun.

Explanation:

Ugo [173]2 years ago
3 0

2

Explanation:

for saving space in large numbers

and small numbers for multiplying easily

You might be interested in
A wind-tunnel experimentis performed on a 1/25scale model of a supersonic aircraft. The prototype aircraft flies at 450 m/s in c
KengaRu [80]

Answer: V = 504m/a

F = 4N

Explanation: please find the attached file for the solution

4 0
3 years ago
Which direction do all waves travel?
OleMash [197]
They travel the way the wind is blowing and also towards the shoreline
7 0
3 years ago
you should begin viewing a bacteria specimen with what objective lens? view available hint(s)for part g you should begin viewing
Sergio039 [100]
  • Some people view bacteria specimens with a 100x objective lens in order to see the smallest details.
  • Others may use a 10x objective lens for more general purposes, such as examining stained slides or pictures.
  • And still others may use a 40x objective lens to gain maximum resolution when viewing images of thick samples.

It is important to choose the appropriate magnification for your needs so that you can properly examine the specimen under study.

<h3>Why is the 100x objective lens necessary to see bacteria?</h3>
  • Bacteria must, of course, be viewed at the maximum magnification and resolution possible because to their small size.
  • Due to optical restrictions, this is approximately 1000x in a light microscope.
  • To improve resolution, the oil immersion method is performed. This calls for a unique 100x objective.

To learn more about bacterial specimen, visit:

brainly.com/question/1412064

#SPJ4

5 0
2 years ago
Please help me with this question​
vovangra [49]

Answer:

1. 12 V

2a. R₁ = 4 Ω

2b. V₁ = 4 V

3a. A = 1.5 A

3b. R₂ = 4 Ω

4. Diagram is not complete

Explanation:

1. Determination of V

Current (I) = 2 A

Resistor (R) = 6 Ω

Voltage (V) =?

V = IR

V = 2 × 6

V = 12 V

2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:

Voltage (V) = 12 V

Current (I) = 1 A

Equivalent resistance (R) =?

V = IR

12 = 1 × R

R = 12 Ω

a. Determination of R₁

Equivalent resistance (R) = 12 Ω

Resistor 2 (R₂) = 8 Ω

Resistor 1 (R₁) =?

R = R₁ + R₂ (series arrangement)

12 = R₁ + 8

Collect like terms

12 – 8 =

4 = R₁

R₁ = 4 Ω

b. Determination of V₁

Current (I) = 1 A

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) =?

V₁ = IR₁

V₁ = 1 × 4

V₁ = 4 V

3a. Determination of the current.

Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:

Resistor 1 (R₁) = 4 Ω

Voltage 1 (V₁) = 6 V

Current (I) =?

V₁ = IR₁

6 = 4 × I

Divide both side by 4

I = 6 / 4

I = 1.5 A

Thus, the ammeter (A) reading is 1.5 A

b. Determination of R₂

We'll begin by calculating the voltage cross R₂. This can be obtained as follow:

Total voltage (V) = 12 V

Voltage 1 (V₁) = 6 V

Voltage 2 (V₂) =?

V = V₁ + V₂ (series arrangement)

12 = 6 + V₂

Collect like terms

12 – 6 = V₂

6 = V₂

V₂ = 6 V

Finally, we shall determine R₂. This can be obtained as follow:

Voltage 2 (V₂) = 6 V

Current (I) = 1.5 A

Resistor 2 (R₂) =?

V₂ = IR₂

6 = 1.5 × R₂

Divide both side by 1.5

R₂ = 6 / 1.5

R₂ = 4 Ω

4. The diagram is not complete

7 0
2 years ago
Find the mass of an object on planet F if its weight is 650 N (g = 13m/s^2)
Andrew [12]

Answer:

the object's mass is 50 kg

Explanation:

We use Newton's second law to solve for the mass:

F = m * a , then   m = F / a

In our case, the acceleration is the gravitational acceleration on the planet, and the force is the weight of the object on the planet. So we get:

m = w / a = 650 N / 13 m/s^2 = 50 kg

Then, the object's mass is 50 kg.

5 0
3 years ago
Other questions:
  • Kamir and Alexis are studying the properties of water. They conducted a variety of experiments to determine its physical and che
    5·2 answers
  • Question 23
    9·1 answer
  • According to Newton's first law of motion, what will an object in motion do when no external force acts on it?
    15·2 answers
  • 3.
    11·1 answer
  • Acid mine drainage is:
    10·1 answer
  • Fiberglass, an insulator, can be found in the wals and roofs of some houses and buildings. Why would an insulator be needed insi
    5·2 answers
  • According to newton's first law, an object traveling in a circle does not have a force acting on it.
    7·1 answer
  • A 0.71 W point source emits sound waves isotropically. Assuming that the energy of the waves is conserved, find the intensity (a
    9·1 answer
  • The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue). Light f
    10·1 answer
  • Assume the truck is going at v0 = 25 m/s, and you're 20 m behind the truck. You decide to accelerate at a = 1.0 m/s2 to pass the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!