Answer: An atom that gains or loses an electron becomes an ion. If it gains a negative electron, it becomes a negative ion. If it loses an electron it becomes a positive ion
chromatic aberration problem do refractor telescopes have that reflectors don't
<u>Explanation:</u>
Chromatic aberration is a phenom in which light rays crossing through a lens focus at various points, depending on their wavelength. Chromatic aberration is a dilemma in which lens or refracting, telescopes undergo from. The various image distances for the respective colors affect various image sizes for them.
This involves the creation of disturbing color fringes in the image. Chromatic aberration can be pretty well adjusted by the use of an achromatic doublet. Here, a positive biconvex lens is coupled with a negative lens placed backward with greater dispersion. Thus partly compensates for the chromatic aberration.
Answer:
Hey mate, here is your answer answer. Hope it helps you
Explanation:
1. If a worker has come into contact with electricity the worker may not be able to remove themselves from the electrical source. The human body is a good conductor of electricity. If you touch a person while they are in contact with the electrical source, the electricity will flow through your body causing electrical shock. Firstly attempt to turn off the source of the electricity (disconnect). If the electrical source can not readily and safely be turned off, use a non-conducting object, such as a fibreglass object or a wooden pole, to remove the person from the electrical source.
2. C- Electrical energy.The term electrical activity means that the food itself has the power to generate electric energy that persists some period of time. This work presents a purely renewable energy as energy comes. the zinc reacts with food tissue.
Answer:
A
Explanation:
Snell's law states:
n₁ sin θ₁ = n₂ sin θ₂
where n is the index of refraction and θ is the angle of incidence (relative to the normal).
The index of refraction of air is approximately 1. So:
1 sin 30° = 1.52 sin θ
θ ≈ 19°
Jupiter ............................................