Answer:
A block of mass M = 5 kg is resting on a rough horizontal surface for which the coefficient of friction is 0.2. When a force F = 40N is applied, the acceleration of the block will be then (g=10ms
2 ).
Mass of the block=5kg
Coeffecient of friction=0.2
external applied force, F=40N
The angle at which the force is applied=30degree
So the horizontal component of force=Fcos30=40×
23 =20 3 N
While the uertical component of the force acting in upward direction=Fsin30=40× 21
=20N
The normal reaction from the surface (N)=mg−Fsin30=50−20=30N
So the ualue of limiting friction=μN=0.2×30=6N
Hence the net horizontal force on the block=Fcos30=μN=20
3
N−6N=28.64N
The horizontal acceleration of the block=
m
Fcos30−μN = 528.64
=5.73m/s 2
Iodine-131 has a half life of 8 days, so half of it is gone every 8 days.
10 grams of iodine-131 is left for 24 days.
At 8 days: 10/2=5 grams left
At 16 days: 5/2=2.5 grams left
At 24 days: 2.5/2=1.25 grams left.
**
Your mistake is that you stopped at 16 days.
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
Answer:
Explanation:
Let the amplitude of individual wave be I and resultant amplitude be 1.703 I . Let the phase difference be Ф in terms of degree
From the formula of resultant vector
(1.703I)² = I² + I² + 2 I² cosФ
2.9 I² = 2I² + 2 I² cosФ
.9I² = 2 I² cosФ
cosФ = .9 / 2
= .45
Ф = 63.25 .