1 and 2 are the factors its a compatable number
Answer:
x = 24
Step-by-step explanation:
The formula for determining the sum of interior angles is:


Therefore to determine an equation for x, we must add up all the interior angle equations and set them equal to 720.

The equation and answer above shows how to find x, which equals 24.
Answer:
Step-by-step explanation:
initial value(1+ percent of interest in decimal form)^(years)
20,000(1.06)^10
= $35816.95393
Answer:
- 8.14 = m = slope
Step-by-step explanation:
We know from the diagram that 8x-7 + 5x+18 = 180 so x = 13
so 8x -7 = 97
slope = tan 97 = -8.14
Answer:

Step-by-step explanation:
From the image attached below;
We need to calculate the limits of x and y to find the double integral
We will notice that y varies from 1 to 2
The line equation for (0,1),(1,2) is:

y - 1 = x
The line equtaion for (1,2),(4,1) is:

-3(y-2) = (x -1)
-3y + 6 = x - 1
-x = 3y - 6 - 1
-x = 3y - 7
x = -3y + 7
This implies that x varies from y - 1 to -3y + 7
Now, the region D = {(x,y) | 1 ≤ y ≤ 2, y - 1 ≤ x ≤ -3y + 7}
The double integral can now be calculated as:

![\iint _D y^2 dA= \int ^2_1 \bigg[ 2xy ^2 \bigg]^{-3y+7}_{y-1} \ dy](https://tex.z-dn.net/?f=%5Ciint%20_D%20y%5E2%20dA%3D%20%5Cint%20%5E2_1%20%5Cbigg%5B%202xy%20%5E2%20%5Cbigg%5D%5E%7B-3y%2B7%7D_%7By-1%7D%20%20%5C%20dy)
![\iint _D y^2 dA= \int ^2_1 \bigg[2(-3y+7)y^2-2(y-1)y^2 \bigg ] \ dy](https://tex.z-dn.net/?f=%5Ciint%20_D%20y%5E2%20dA%3D%20%5Cint%20%5E2_1%20%5Cbigg%5B2%28-3y%2B7%29y%5E2-2%28y-1%29y%5E2%20%5Cbigg%20%5D%20%20%5C%20dy)
![\iint _D y^2 dA= \int ^2_1 \bigg[-6y^3 +14y^2 -2y^3 +2y^2 \bigg ] \ dy](https://tex.z-dn.net/?f=%5Ciint%20_D%20y%5E2%20dA%3D%20%5Cint%20%5E2_1%20%5Cbigg%5B-6y%5E3%20%2B14y%5E2%20-2y%5E3%20%2B2y%5E2%20%5Cbigg%20%5D%20%20%5C%20dy)
![\iint _D y^2 dA= \int ^2_1 \bigg[-8y^3 +16y^2 \bigg ] \ dy](https://tex.z-dn.net/?f=%5Ciint%20_D%20y%5E2%20dA%3D%20%5Cint%20%5E2_1%20%5Cbigg%5B-8y%5E3%20%2B16y%5E2%20%20%5Cbigg%20%5D%20%20%5C%20dy)
![\iint _D y^2 dA= \bigg[-8(\dfrac{y^4}{4}) +16(\dfrac{y^3}{3})\bigg ] ^2_1](https://tex.z-dn.net/?f=%5Ciint%20_D%20y%5E2%20dA%3D%20%20%5Cbigg%5B-8%28%5Cdfrac%7By%5E4%7D%7B4%7D%29%20%20%2B16%28%5Cdfrac%7By%5E3%7D%7B3%7D%29%5Cbigg%20%5D%20%5E2_1)
![\iint _D y^2 dA= \bigg[-8(\dfrac{16}{4}-\dfrac{1}{4}) +16(\dfrac{8}{3}-\dfrac{1}{3})\bigg ]](https://tex.z-dn.net/?f=%5Ciint%20_D%20y%5E2%20dA%3D%20%20%5Cbigg%5B-8%28%5Cdfrac%7B16%7D%7B4%7D-%5Cdfrac%7B1%7D%7B4%7D%29%20%20%2B16%28%5Cdfrac%7B8%7D%7B3%7D-%5Cdfrac%7B1%7D%7B3%7D%29%5Cbigg%20%5D)
![\iint _D y^2 dA= \bigg[-8(\dfrac{15}{4}) +16(\dfrac{7}{3})\bigg ]](https://tex.z-dn.net/?f=%5Ciint%20_D%20y%5E2%20dA%3D%20%20%5Cbigg%5B-8%28%5Cdfrac%7B15%7D%7B4%7D%29%20%20%2B16%28%5Cdfrac%7B7%7D%7B3%7D%29%5Cbigg%20%5D)


