Answer:
16.2 days
Explanation:
Find the number of halflives:
1/2 * 1/2 = 1/4 so <u>two</u> halflives have passed
2 * 8.1 days = 16.2 days
This heats up when an electric current passes through it, and produces light as a result. The resistance of a lamp increases as the temperature of its filament increases. The current flowing through a filament lamp is not directly proportional to the voltage across it.
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
as it is given that it covers a total distance 1 * 10^2 m
total time taken by it = 13.6 s
now the average speed is given as ratio of total distance and total time



so the average speed will be 7.35 m/s
now if it starts from rest and achieve the final speed as 7.35 m/s
now we can use kinematics



so its acceleration will be 3.68 m/s^2