The force of gravity between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the mass of the object is

, while the Earth's mass is

. Their separation is

, therefore the gravitational force exerted on the object is
Answer:
(d) a net external force must be acting on the system
Explanation:
Momentum is given as the product of mass and velocity.
P = MV
According to Newton's second law of motion, " Force applied to a body (system) is directly proportional to the rate of change of momentum of the body (system) which takes place in the direction of the applied force (external force).
F ∝ΔMV
Therefore, If the total momentum of a system is changing, a net external force must be acting on the system.
(d) a net external force must be acting on the system
Answer:
14.36 N
Explanation:
= Tension in string 1
= Tension in string 2
= mass of the bar = 2.7 kg
= weight of the bar
weight of the bar is given as
N
= mass of the bar = 1.35 kg
= weight of the monkey
weight of the monkey is given as
N
Using equilibrium of torque about left end
N
Using equilibrium of force in vertical direction
N
Answer:
62.06 g/mol
Explanation:
We are given that a solution containing 10 g of an unknown liquid and 90 g
Given mass of solute =
=10 g
Given mass of solvent=
=90 g

Freezing point of solution =-3.33
C
Freezing point of solvent =
C
Change in freezing point =Depression in freezing point
=Freezing point of solvent - freezing point of solution=0+3.33=



Hence, molar mass of unknown liquid is 62.06g/mol.