Answer:
83.69 gm
Explanation:
molar weight of N2 = 28
Find the number of moles then multiply by this
1.8 x10^24/ (6.022x10^23) * 28 =83.69 gm
Answer:
4800
Explanation:
using my Cal ex to solve the question
calculation goes like this
2*300*8=4800
V2 = 250 ml
Explanation:
Given:
P1 = 0.99 atm. V1 = 240 ml
P2 = 0.951 atm. V2 = ?
We can use Boyle's law to solve for V2
P1V1 = P2V2
V2 = (P1/P2)V1
= (0.99 atm/0.951 atm)(240 ml)
= 250. ml
The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Given data :
mass of aspirin = 640 mg = 0.640 g
volume of water = 10 ounces = 0.295735 L
molar mass of aspirin = 180.16 g/mol
moles of aspirin = mass / molar mass = 0.00355 mol
<h3>Determine the pH of the solution </h3>
First step : <u>calculate the concentration of aspirin</u>
= moles of Aspirin / volume of water
= 0.00355 / 0.295735
= 0.012 M
Given that pKa of Aspirin = 3.5
pKa = -logKa
therefore ; Ka =
= 
From the Ice table
=
=
given that the value of Ka is small we will ignore -x
x² =
x =
Therefore
[ H⁺ ] =
given that
pH = - Log [ H⁺ ]
= - ( -3 + log 1.948 )
= 2.71 ≈ 2.7
Hence we can conclude that The pH of the solution in which one normal adult dose aspirin is dissolved is : 2.7
Learn more about Aspirin : brainly.com/question/2070753
Answer:
A pregnant woman would consume 1.812 x 10⁻⁶ oz of mercury in a month if she ate the maximum recommended amount of fish.
Explanation:
0.302 oz mercury _____________ 1 x 10⁶ oz bluefish
x _____________ 6.00 oz bluefish
x = 1.812 x 10⁻⁶ oz mercury
A pregnant woman would consume 1.812 x 10⁻⁶ oz of mercury in a month if she ate the maximum recommended amount of fish.