Lets quickly run through the prime numbers and see what it is not divisible by
39 is not divisible by 2
39 IS divisible by 3
So lets stop right here.
What is 39 divided by 3? 13 !
And 13 is a prime number too!
So that is all we can do.
So prime factorization of 39 is <u>3 x 13</u><u><em /></u>
Answer:
Graph the second equation by finding two data points. By setting first x and then y equal to zero it is possible to find the y intercept on the vertical axis and the x intercept on the horizontal axis. At the point of intersection of the two equations x and y have the same values.
Answer:
25 in
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Trigonometry</u>
[Right Triangles Only] Pythagorean Theorem: a² + b² = c²
- a is a leg
- b is another leg
- c is the hypotenuse<u>
</u>
Step-by-step explanation:
<u>Step 1: Identify</u>
Leg a = 24
Leg b = 7 in
Leg c = <em>x</em>
<em />
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute in variables [Pythagorean Theorem]: 24² + 7² = x²
- Evaluate exponents: 576 + 49 = x²
- Add: 625 = x²
- [Equality Property] Square root both sides: 25 = x
- Rewrite/Rearrange: x = 25
The angles are the only constraint here that counts. If one of the three interior angles of a supposed triangle is 50 degrees and another is 80 degrees, then the third angle must be 50 degrees. Thus, we have a 50-50-80 triangle, which is isosceles though not a right triangle. If 4 feet is a measure of one of the equal sides of a supposed triangle, then obviously the adjacent side also has measure 4 ft.
The set of angles remains the same (50-50-80), but subject to the constraint mentioned above, the measure of any one of the sides has infinitely many possible values, so long as those values are positive.