Answer:
- Let p be the population at t be the number of years since 2011. Then,

- The projected population of the high school in 2015=1800
- In <u>2019</u> the population be 1600 students
Step-by-step explanation:
Given: The population at Bishop High School students in 2011 =2000
Also, Every year the population decreases by 50 students which implies the rate of decrease in population is constant.
So, the function is a linear function.
Let p be the population at t be the number of years since 2011.
Then, 
So at t=0, p=2000
In year 2015, t=4, substitute t=4 in the above equation ,we get

Hence, the projected population of the high school in 2015=1800
Now, put p=1600 in the function , we get

Now, 2011+8=2019
Hence, in <u>2019</u> the population be 1600 students
4x + 5 - 5x
4 x 12+ 5
48 + 5 - 5
53 - 5
48
If you subtract Betty's time for the swim, 27.948 seconds, from Nancy's time, 28.004 seconds, you will find that Betty was faster than Nancy by 0.056 seconds. She would be considered the winner of the 50-meter freestyle swim.
Answer:
∠13 ≅ ∠16 - Vertical Angles Theorem
∠10 ≅ ∠14 - corresponding angles for parallel line p and q cut by the transversal s
∠5 ≅ ∠13 - corresponding angles for
parallel lines r and s cut by
the transversal q
∠1 ≅ ∠5 - corresponding angles for
parallel lines r and s cut by
the transversal q
Step-by-step explanation:
Linear Pair Theorem won't be used. When you look at the lines on the image you see that 13 and 16 are vertical from each other making there answer the vertical angles theorem. When you look at 10 and 14 you see that they lie on p and q with s going in the center of them. When you look at 5 and 13 they lie on s and r with q going down the middle of them. With 1 and 5 they also lie on p and q but r goes down the center of them instead of s.
Answer: See Below
<u>Step-by-step explanation:</u>
NOTE: You need the Unit Circle to answer these (attached)
5) cos (t) = 1
Where on the Unit Circle does cos = 1?
Answer: at 0π (0°) and all rotations of 2π (360°)
In radians: t = 0π + 2πn
In degrees: t = 0° + 360n
******************************************************************************

Where on the Unit Circle does
<em>Hint: sin is only positive in Quadrants I and II</em>


In degrees: t = 30° + 360n and 150° + 360n
******************************************************************************

Where on the Unit Circle does 
<em>Hint: sin and cos are only opposite signs in Quadrants II and IV</em>


In degrees: t = 120° + 360n and 300° + 360n