1.5052g BaCl2.2H2O => 1.5052g / 274.25 g/mol = 0.0054884 mol
=> 0.0054884 mol Ba
<span>This means that at most 0.0054884 mol BaSO4 can form since Ba is the limiting reagent. </span>
<span>0.0054884 mol BaSO4 => 0.0054884 mol * 233.39 g/mol = 1.2809 g BaSO4</span>
What amount of heat absorbs 50 g of steel (ce = 0.115 cal / g. ° C) that
does its temperature vary by 25 ° C?
Answer:
143.75cal
Explanation:
Given parameters:
Mass of steel = 50g
Specific heat capacity of the steel = 0.115cal/g°C
Temperature = 25°C
Unknown:
Amount of heat = ?
Solution:
The amount of heat to cause this temperature change is dependent on mass and specific heat capacity of the substance.
Amount of heat = m C (ΔT)
m is the mass
c is the specific heat capacity
ΔT is the temperature change
Now insert the parameters and solve;
Amount of heat = 50 x 0.115 x 25
Amount of heat = 143.75cal
Answer is: <span>yield of a reaction is 56,4%.
</span>Chemical reaction: PCl₃ + 3H₂O → 3HCl + H₃PO₃.
m(PCl₃) = 200 g.
m(HCl) = 91,0 g.
n(PCl₃) = m(PCl₃) ÷ M(PCl₃).
n(PCl₃) = 200 g ÷ 137,33 g/mol.
n(PCl₃) = 1,46 mol.
n(HCl) = m(HCl) ÷ M(HCl).
n(HCl) = 91 g ÷ 36,45 g/mol.
n(HCl) = 2,47 mol.
From reaction: n(PCl₃) : n(HCl) = 1 : 3.
n(HCl) = 1,46 mol · 3 = 4,38 mol.
Yield of reaction: 2,47 mol ÷ 4,38 mol · 100% = 56,4%.
Answer: (a) The solubility of CuCl in pure water is
.
(b) The solubility of CuCl in 0.1 M NaCl is
.
Explanation:
(a) Chemical equation for the given reaction in pure water is as follows.

Initial: 0 0
Change: +x +x
Equilibm: x x

And, equilibrium expression is as follows.
![K_{sp} = [Cu^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCu%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)

x = 
Hence, the solubility of CuCl in pure water is
.
(b) When NaCl is 0.1 M,
, 
, 
Net equation: 
= 0.1044
So for, 
Initial: 0.1 0
Change: -x +x
Equilibm: 0.1 - x x
Now, the equilibrium expression is as follows.
K' = 
0.1044 = 
x = 
Therefore, the solubility of CuCl in 0.1 M NaCl is
.