1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VMariaS [17]
3 years ago
6

Glycolic acid, which is a monoprotic acid and a constituent in sugar cane, has a pKa of 3.9. A 25.0 mL solution of glycolic acid

is titrated to the equivalence point with 35.8 mL of 0.020 M sodium hydroxide solution. What is the pH of the resulting solution at the equivalence point?
Chemistry
1 answer:
Phoenix [80]3 years ago
7 0

Answer:

pH = 8.0

Explanation:

First, we have to calculate the moles of NaOH.

35.8 \times 10^{-3}L.\frac{0.020mol}{L} =7.2\times 10^{-4}mol

Let's consider the balanced equation.

C₂H₄O₃ + NaOH ⇒ C₂H₃O₃Na + H₂O

The molar ratio C₂H₄O₃: NaOH: C₂H₃O₃Na is 1: 1: 1. So, when 7.2 × 10⁻⁴ moles of NaOH react completely with 7.2 × 10⁻⁴ moles of C₂H₄O₃ they form 7.2 × 10⁻⁴ moles of C₂H₃O₃Na.

The concentration of C₂H₃O₃Na is:

\frac{7.2\times 10^{-4}mol}{60.8 \times 10^{-3}L} =0.012M

C₂H₃O₃Na dissociates according to the following equation:

C₂H₃O₃Na(aq) ⇒ C₂H₃O₃⁻(aq) + Na⁺(aq)

C₂H₃O₃⁻ comes from a weak acid so it undergoes basic hydrolisis.

C₂H₃O₃⁻ + H₂O ⇄ C₂H₄O₃ + OH⁻

If we know that pKa for C₂H₄O₃ is 3.9, we can calculate pKb for C₂H₃O₃⁻ using the following expression:

pKa + pKb = 14

pKb = 14 -3.9 = 10.1

10.1 = -log Kb

Kb = 7.9 × 10⁻¹¹

We can calculate [OH⁻] using the following expression:

[OH⁻] = √(Kb.Cb)               <em>where Cb is the initial concentration of the base</em>

[OH⁻] = √(7.9 × 10⁻¹¹ × 0.012M) = 9.7 × 10⁻⁷ M

Now, we can calculate pOH and pH.

pOH = -log [OH⁻] = -log (9.7 × 10⁻⁷) = 6.0

pH + pOH = 14

pH = 14 - pOH = 14 - 6.0 = 8.0

You might be interested in
Which of these is the final result of secondadry succession?
Grace [21]

Answer:

a

Explanation:

ADAPTATIOnn but if thhere would be an option o all the above it would be that

5 0
3 years ago
Read 2 more answers
What is the speed of sound in dry air at 20°C?
Lubov Fominskaja [6]
343 meters per second
4 0
3 years ago
In what areas of the periodic table do you find the least reactive elements?
slamgirl [31]

Answer:

Noble gases are nonreactive, nonmetallic elements in group 18 of the periodic table. Noble gases are the least reactive of all elements. That's because they have eight valence electrons, which fill their outer energy level.

Elements: Argon

4 0
3 years ago
Read 2 more answers
From the relative rates of effusion of ²³⁵UF₆ and ²³⁸UF₆ , find the number of steps needed to produce a sample of the enriched f
Dafna11 [192]

The number of steps required to manufacture a sample of the 3.0 mole%  ²³⁵U enriched fuel used in many nuclear reactors from the relative rates of effusion of ²³⁵UF₆ and ²³⁸UF₆. ²³⁵U occurs naturally in an abundance of 0.72% are :  mining, milling, conversion, enrichment, fuel fabrication and electricity generation.

<h3>What is Uranium abundance ? </h3>
  • The majority of the 500 commercial nuclear power reactors that are currently in operation or being built across the world need their fuel to be enriched in the U-235 isotope.
  • This enrichment is done commercially using centrifuges filled with gaseous uranium.
  • A laser-excitation-based method is being developed in Australia.
  • Uranium oxide needs to be changed into a fluoride before enrichment so that it can be treated as a gas at low temperature.
  • Uranium enrichment is a delicate technology from the perspective of non-proliferation and needs to be subject to strict international regulation. The capacity for world enrichment is vastly overbuilt.

The two isotopes of uranium that are most commonly found in nature are U-235 and U-238. The 'fission' or breaking of the U-235 atoms, which releases energy in the form of heat, is how nuclear reactors generate energy. The primary fissile isotope of uranium is U-235.

The U-235 isotope makes up 0.7% of naturally occurring uranium. The U-238 isotope, which has a small direct contribution to the fission process, makes up the majority of the remaining 99.3%. (though it does so indirectly by the formation of fissile isotopes of plutonium). A physical procedure called isotope separation is used to concentrate (or "enrich") one isotope in comparison to others. The majority of reactors are light water reactors (of the PWR and BWR kinds) and need their fuel to have uranium enriched by 0.7% to 3-5% U-235.

There is some interest in increasing the level of enrichment to around 7%, and even over 20% for particular special power reactor fuels, as high-assay LEU (HALEU).

Although uranium-235 and uranium-238 are chemically identical, they have different physical characteristics, most notably mass. The U-235 atom has an atomic mass of 235 units due to its 92 protons and 143 neutrons in its nucleus. The U-238 nucleus has 146 neutrons—three more than the U-235 nucleus—in addition to its 92 protons, giving it a mass of 238 units.

The isotopes may be separated due to the mass difference between U-235 and U-238, which also makes it possible to "enrich" or raise the proportion of U-235. This slight mass difference is used, directly or indirectly, in all current and historical enrichment procedures.

Some reactors employ naturally occurring uranium as its fuel, such as the British Magnox and Canadian Candu reactors. (By contrast, to manufacture at least 90% U-235, uranium needed for nuclear bombs would need to be enriched in facilities created just for that purpose.)

Uranium oxide from the mine is first transformed into uranium hexafluoride in a separate conversion plant because enrichment operations need the metal to be in a gaseous state at a low temperature.

To know more about Effusion please click here : brainly.com/question/22359712

#SPJ4

7 0
2 years ago
Chlorine has two isotopes, 35Cl and 37Cl; 75.77 % of chlorine is 35Cl and 24.23 % is 37Cl. The atomic mass of 35Cl is 34.969 amu
storchak [24]

Answer:

35.4528731 amu

Explanation:

To appropriately get the atomic mass unit of chlorine, we can get the answer using the masses from the isotopes. This can be obtained as follows. What we do is that we multiply the percentage compositions by the masses.

Now let’s do this.

[75.77/100 * 34.969] + [24.23/100 * 36.966]

= 26.4960113 + 8.9568618 = 35.4528731

3 0
4 years ago
Read 2 more answers
Other questions:
  • What is asubstance that flows Called
    9·2 answers
  • Which discovery did george mendel make
    6·1 answer
  • What does it mean if something is insoluble
    7·1 answer
  • Who was the first hispanic justice of the United States Supreme Court
    14·2 answers
  • How many atoms does an element make up
    12·2 answers
  • Tornadoes can be identified and tracked using advanced instruments that can detect small changes in wind velocity and air pressu
    14·1 answer
  • Example of exothermic reaction:
    7·1 answer
  • Consider this balanced chemical equation: 5SF4 + 2I2O5 = 4IF5 + 5SO2 a. What is the limiting reagent when 4.687 grams SF4 reacts
    11·1 answer
  • What are the functional groups in oxybenzone?
    6·2 answers
  • Titration Volume &amp; Concentration
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!