Y = xe^x
dy/dx(e^x x)=>use the product rule, d/dx(u v) = v*(du)/(dx)+u*(dv)/(dx), where u = e^x and v = x:
= e^x (d/dx(x))+x (d/dx(e^x))
y' = e^x x+ e^x
y'(0) = 1 => slope of the tangent
slope of the normal = -1
y - 0 = -1(x - 0)
y = -x => normal at origin
The answer is 1/3 divide 12 by 12 and 36 by 12
My answer is C
because
x-12=-3
x=-3+12
x=9
Answer:
What is le question
Step-by-step explanation:
?
Answer:
15 years old
Step-by-step explanation:
Start by defining the variables that we are going to use throughout our working:
Let the current age of Wei Ling and Wei Xuan be L and X years old respectively.
Next, form equations using the given information.
<u>5 years </u><u>ago</u>
Wei Ling: (L -5) years old
Wei Xuan: (X -5) years old
Given that the ratio of Wei Ling's age to that of Wei Xuan's is 2: 5,

Cross multiply:
2(X -5)= 5(L -5)
Expand:
2X -10= 5L -25
2X= 5L -25 +10
2X= 5L -15 -----(1)
<u>9 years time</u>
Wei Ling: (L +9) years old
Wei Xuan: (X +9) years old
Given that the ratio of Wei Ling's age to that of Wei Xuan is 3: 4,

Cross multiply:
3(X +9)= 4(L +9)
Expand:
3X +27= 4L +36
3X= 4L +36 -27
3X= 4L +9 -----(2)
Let's solve using the elimination method.
(1) ×3:
6X= 15L -45 -----(3)
(2) ×2:
6X= 8L +18 -----(4)
(3) -(4):
6X -6X= 15L -45 -(8L +18)
0= 15L -45 -8L -18
0= 7L -63
7L= 63
L= 63 ÷7
L= 9
Substitute L= 9 into (1):
2X= 5(9) -15
2X= 45 -15
2X= 30
X= 30 ÷2
X= 15
Thus, Wei Xuan is 15 years old now.