Answer:
<h3>
30.66m</h3>
Explanation:
Using the equation of motion formula
where;
S is the height to which the ball rises
u is the initial velocity of the ball = 0m/s
a is the acceleration due to gravity = 9.81m/s²
t is the time taken by the ball in air = 5.0s
Note that the time to rise to the peak is one-half the total hang-time = 5.0/2 = 2.5s
Substituting the given parameters into the formula above to get S:

This means that the ball rises 30.66m before it reaches its peak.
Well, first off, Newtons second law of motion <span>deals with the motion of accelerating and decelerating objects.
W</span>e already know that from everyday life examples such as simply pushing a car that if 2 people push a car on a flat road it will accelerate faster than if one person was pushing it... Therefore, there is a relationship between the size of the force and the acceleration.
Now onto the third law of motion. First of all, what is the third law of motion? Well, a force is a push or a pull that acts upon an object as a results of its interaction with another object. Forces result from interactions! According to Newtons third law, whenever one object, and another object interact with each other, they exert forces upon each other. "For every action, there is an equal and opposite reaction." The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. So, how is this important to everyday life you may ask?
<span>Well, the action-reaction force pairs are found everywhere in your body.
For example, right now as I am typing, my tendons are exerting forces on bones, and those bones exert reaction forces on the tendons, as muscles contract, pulling my fingers on the keys. I press on those keys, and they press back on my fingers. See? Since i'm pressing on the keys, the press back on me. Its opposite from each other, as stated in the quite above. "</span><span>For every action, there is an equal and opposite reaction." </span>
speed increases with temp maybe
Answer:
Modern telescopes are capable of seeing bright galaxies up to about 10000 millions light years away
Explanation:
A telescope is a tool that astronomers use to see faraway objects. Most telescopes work by using curved mirrors to gather and focus light from the night sky. The bigger the mirrors or lenses, the more light the telescope can gather.
Modern telescopes gather information from the electromagnetic spectrum far beyond the range of visible light.
The farthest bright galaxies, that the modern telescope is capable of seeing is 10000 millions light years away.
Answer:
Electrical Conductivity is 3200 
Solution:
As per the question:

Mobility of electrons, 
Mobility of holes, 
Charge, Q = 
Now,
The formula for the conductivity is given by:

