Answer:
Answered
Explanation:
Part A
According to Faraday's law the induced emf in coil is equal to negative of its rate of change of magnetic flux time the number of turns in the coil.
= 
When an emf generated by a change of magnetic flux, produced current of whose magnetic field opposes the change which produces it.
By the above equation the correct options are 1,2 and 4
Part B
Large signals of frequency of 60Hz are measured by osciloscope.
Hence the correct option is part 1.
Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!
Answer:
the time between successive meridian transits of the sum at a particular place
I think your best bet would be.
It acts in the direction opposite of the motion
Answer:
N = 167 Newtons
R = 727 Newtons
Explanation:
i) For static equilibrium, moments about any convenient point must sum to zero.
A moment is the product of a force and a moment arm length. Only the force acting perpendicular to a moment arm passing through the pivot point makes a moment.
ii) I will <em>ASSUME </em>the two moment arms are 0.05m and 0.15 m
CCW moments about the fulcrum are
190 N(0.2 m) + 280 N(0.05 m) = 52 N•m
CW moments are (N)N(0.15 m + 90 N(0.3 m) = 27 + 0.15N N•m
For static equilibrium, these must be equal
27 + 0.15N = 52
0.15N = 25
N = 166.6666666...
Sum moments about N to zero
(Same as saying CW and CCW moments must balance)
190(0.2 + 0.15) + 280(0.05 + 0.15) - R(0.15) - 90(0.3 - 0.15) = 0
R = 726.6666666...
We could verify this by summing vertical forces to zero.
R - 190 - 280 - 166.666666 - 90 = 0
R = 726.6666666...