Answer:
Malik considers the enlargement of the trapezoid. The side with the length 10 cm becomes the side with the length 25 cm, the side with the length 18 cm becomes the side with x cm.
Write a proportion of corresponding sides:
Cross multiply:
so correct option is C,
(18)(25) =10x
Step-by-step explanation:
![\bf 2[x^2+y^2]^2=25(x^2-y^2)\qquad \qquad \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ 3}}\quad ,&{{ 1}})\quad \end{array}\\\\ -----------------------------\\\\ 2\left[ x^4+2x^2y^2+y^4 \right]=25(x^2-y^2)\qquad thus \\\\\\ 2\left[ 4x^3+2\left[ 2xy^2+x^22y\frac{dy}{dx} \right]+4y^3\frac{dy}{dx} \right]=25\left[2x-2y\frac{dy}{dx} \right] \\\\\\ 2\left[ 4x^3+2\left[ 2xy^2+x^22y\frac{dy}{dx} \right]+4y^3\frac{dy}{dx} \right]=50\left[x-y\frac{dy}{dx} \right] \\\\\\ ](https://tex.z-dn.net/?f=%5Cbf%202%5Bx%5E2%2By%5E2%5D%5E2%3D25%28x%5E2-y%5E2%29%5Cqquad%20%5Cqquad%20%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%5C%5C%0A%25%20%20%20%28a%2Cb%29%0A%26%28%7B%7B%203%7D%7D%5Cquad%20%2C%26%7B%7B%201%7D%7D%29%5Cquad%20%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A2%5Cleft%5B%20x%5E4%2B2x%5E2y%5E2%2By%5E4%20%5Cright%5D%3D25%28x%5E2-y%5E2%29%5Cqquad%20thus%0A%5C%5C%5C%5C%5C%5C%0A2%5Cleft%5B%204x%5E3%2B2%5Cleft%5B%202xy%5E2%2Bx%5E22y%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%3D25%5Cleft%5B2x-2y%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C%0A2%5Cleft%5B%204x%5E3%2B2%5Cleft%5B%202xy%5E2%2Bx%5E22y%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%3D50%5Cleft%5Bx-y%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C%0A)
![\bf \left[ 4x^3+2\left[ 2xy^2+x^22y\frac{dy}{dx} \right]+4y^3\frac{dy}{dx} \right]=25\left[x-y\frac{dy}{dx} \right] \\\\\\ 4x^3+4xy^2+4x^2y\frac{dy}{dx}+4y^3\frac{dy}{dx}+25y\frac{dy}{dx}=25x \\\\\\ \cfrac{dy}{dx}[4x^2y+4y^3+25y]=25x-4x^3+4xy^2 \\\\\\ \cfrac{dy}{dx}=\cfrac{25x-4x^3+4xy^2}{4x^2y+4y^3+25y}\impliedby m=slope](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%5B%204x%5E3%2B2%5Cleft%5B%202xy%5E2%2Bx%5E22y%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%3D25%5Cleft%5Bx-y%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C%0A4x%5E3%2B4xy%5E2%2B4x%5E2y%5Cfrac%7Bdy%7D%7Bdx%7D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%2B25y%5Cfrac%7Bdy%7D%7Bdx%7D%3D25x%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%5B4x%5E2y%2B4y%5E3%2B25y%5D%3D25x-4x%5E3%2B4xy%5E2%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B25x-4x%5E3%2B4xy%5E2%7D%7B4x%5E2y%2B4y%5E3%2B25y%7D%5Cimpliedby%20m%3Dslope)
notice... a derivative is just the function for the slope
now, you're given the point 3,1, namely x = 3 and y = 1
to find the "m" or slope, use that derivative, namely

that'd give you a value for the slope
to get the tangent line at that point, simply plug in the provided values
in the point-slope form

and then you solve it for "y", I gather you don't have to, but that'd be the equation of the tangent line at 3,1
Answer:
it might be c I'm not to sure tho
Answer:
variability and stay the same
Step-by-step explanation: