1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Triss [41]
3 years ago
14

Using the protractor, find the angle measure.

Mathematics
1 answer:
Andrej [43]3 years ago
4 0

Answer:

140°

Step-by-step explanation:

155°-15° =140°

You might be interested in
0.8, 1.2, 1.6, 2.0, ...<br> what is the rule in the squennce above?
belka [17]

Answer:

You add 0.4 each time

Step-by-step explanation:

.........

8 0
3 years ago
Read 2 more answers
What is the length of BC in the right triangle below?
telo118 [61]

Answer:

The answer should be 15

Step-by-step explanation:

5 0
3 years ago
Use a graphing calculator to approximate the vertex of the graph of the parabola defined by the following
vivado [14]

Answer:  (-0.4, 6.8)

The graph is attached

Step-by-step explanation:

We can find the axis of symmetry using the formula x = -b/2a

x = - -4/2(-5)

x = 4/-10

x = 0.04

Substitute for x and calculate y

y = \left(0.4^{2}\right)\left(-5\right)-4\left(-0.4\right)\ +6

y = 6.8

3 0
3 years ago
Find the value of MN if AB= 21 cm, BC= 16.8 cm, and LM= 28 cm.
Tom [10]

Answer:

lm=36x2

Step-by-step explanation:

8 0
3 years ago
Find the counterclockwise circulation and outward flux of the field F=7xyi+5y^2j around and over the boundary of the region C en
dezoksy [38]

Split up the boundary of <em>C</em> (which I denote ∂<em>C</em> throughout) into the parabolic segment from (1, 1) to (0, 0) (the part corresponding to <em>y</em> = <em>x</em> ²), and the line segment from (1, 1) to (0, 0) (the part of ∂<em>C</em> on the line <em>y</em> = <em>x</em>).

Parameterize these pieces respectively by

<em>r</em><em>(t)</em> = <em>x(t)</em> <em>i</em> + <em>y(t)</em> <em>j</em> = <em>t</em> <em>i</em> + <em>t</em> ² <em>j</em>

and

<em>s</em><em>(t)</em> = <em>x(t)</em> <em>i</em> + <em>y(t)</em> <em>j</em> = (1 - <em>t</em> ) <em>i</em> + (1 - <em>t</em> ) <em>j</em>

both with 0 ≤ <em>t</em> ≤ 1.

The circulation of <em>F</em> around ∂<em>C</em> is given by the line integral with respect to arc length,

\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T \,\mathrm ds

where <em>T</em> denotes the <em>tangent</em> vector to ∂<em>C</em>. Split up the integral over each piece of ∂<em>C</em> :

• on the parabolic segment, we have

<em>T</em> = d<em>r</em>/d<em>t</em> = <em>i</em> + 2<em>t</em> <em>j</em>

• on the line segment,

<em>T</em> = d<em>s</em>/d<em>t</em> = -<em>i</em> - <em>j</em>

Then the circulation is

\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(\mathbf i+2t\,\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i-\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (7t^3+10t^5)\,\mathrm dt - 12 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{-\frac7{12}}

Alternatively, we can use Green's theorem to compute the circulation, as

\displaystyle\int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \iint_C\frac{\partial(5y^2)}{\partial x} - \frac{\partial(7xy)}{\partial y}\,\mathrm dx\,\mathrm dy \\\\ = -7\int_0^1\int_{x^2}^x x\,\mathrm dx \\\\ = -7\int_0^1 xy\bigg|_{y=x^2}^{y=x}\,\mathrm dx \\\\ =-7\int_0^1(x^2-x^3)\,\mathrm dx = -\frac7{12}

The flux of <em>F</em> across ∂<em>C</em> is

\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N \,\mathrm ds

where <em>N</em> is the <em>normal</em> vector to ∂<em>C</em>. While <em>T</em> = <em>x'(t)</em> <em>i</em> + <em>y'(t)</em> <em>j</em>, the normal vector is <em>N</em> = <em>y'(t)</em> <em>i</em> - <em>x'(t)</em> <em>j</em>.

• on the parabolic segment,

<em>N</em> = 2<em>t</em> <em>i</em> - <em>j</em>

• on the line segment,

<em>N</em> = - <em>i</em> + <em>j</em>

So the flux is

\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(2t\,\mathbf i-\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i+\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (14t^4-5t^4)\,\mathrm dt - 2 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{\frac{17}{15}}

5 0
3 years ago
Other questions:
  • The manager wants to advertise that anybody who isn't served within a certain number of minutes gets a free hamburger. But she d
    5·1 answer
  • Hiii can someone please help me with this math question
    6·2 answers
  • Amber is learning how to jump rope. She made 21 jumps the first day, 33
    5·2 answers
  • Elizabeth Ha
    10·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWERS ONLY PLEASE!!!
    7·1 answer
  • Tourists were on a hiking trip for three days. On the first day, they hiked 1/8 of the trail. On the second day they hiked 4/7 o
    10·1 answer
  • A DVD is being sold for $15.98 this is after a 45% discount what is the pre-discount price.
    14·1 answer
  • <img src="https://tex.z-dn.net/?f=x%20-%203y%20%3D%205a%20%20%5C%3A%20%20%5C%3A%20and%20%5C%3A%20%20%5C%3A%20%20%7Bx%7D%5E%7B2%7
    15·1 answer
  • I need help with the equation inserted in the picture.
    7·1 answer
  • If 7x – 24 = 8x – 39, then x = ?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!