Esters and Formation of esters. Esters and water are formed when alcohols react with carboxylic acids. This reaction is called esterification, which is a reversible reaction. ... Since esterification is a reversible reaction, esters can undergo hydrolysis to form corresponding alcohol and organic acid.
Answer:
Mass of 205 mL of the liquid is 164 g
Explanation:
We know, 
Here density of liquid is 0.798 g/mL and volume of liquid is 205 mL
So, mass of liquid = 
= 
= 164 g
hence mass of 205 mL of the liquid is 164 g.
The equation that scientists could use to find the wavelength of the emission lines of the hydrogen atom would be that of Balmer.
The wavelength of the emission lines of the hydrogen atom can be derived using the Balmer series:
1/λ 
Where λ = wavelength,
= Rydberg constant, and n = level of the original orbital.
The equation becomes applicable in getting the wavelength of emitted light when electrons in hydrogen atoms transition from higher (n) orbital to lower orbital (2) levels.
More on the Balmer series can be found here: brainly.com/question/5295294
Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.