<u>Answer:</u> 2.00 atm
<u>Explanation:</u>
The gas is kept under the same temperature in this problem. Assuming the amount of gas is constant, we can apply the Boyle's law.
The Boyle's law equation,
P₁V₁ = P₂V ₂
Plug in the values,
1.00 atm x 4.0 L = P₂ x 2.0 L
Simplify,
4.00 atm L = 2 P₂ L
Now flip the equation,
2 P₂ L = 4.00 atm L
Dividing both sides by 2 we get,
P₂ = 2.00 atm
Answer:
No
Explanation:
In ideal solutions, the interactions between solute - solvent are approximately the same as those of solute - solute and solvent - solvent, that is the interactions are to be practically indistintiguishable after disolution.
The moment we have a release of energy (the solution feels warm) we are to conclude that there are strong interactions between the water and methanol molecules so we would expect the solution to be non ideal.
The reason for the interactions is the presence of hydrogen bonds between methanol and water.
M(P)=3.72 g
M(P)=31 g/mol
m(Cl)=21.28 g
M(Cl)=35.5 g/mol
n(P)=m(P)/M(P)
n(P)=3.72/31=0.12 mol
n(Cl)=m(Cl)/M(Cl)
n(Cl)=21.28/35.5=0.60 mol
P : Cl = 0.12 : 0.60 = 1 : 5
PCl₅ - is the empirical formula
Silicon is the element having a mass of 28.09 g
<u>Explanation</u>:
- Silicon is the element having an atomic mass of 28.09 g / mol. So 28.09 g of silicon contains 6.023
10^23 atoms. One mole of each element can produce one mole of compound.
- The Atomic weight of an element can be determined by the number of protons and neutrons present in one atom of that element. So atomic weight expressed in grams always contain the same number of atoms( 6.023
10^23).
- Avagadro number is the number of atoms of 1 mole of any gas at standard temperature and pressure. It has been determined that 6.023
10^23 atoms of an element are equal to the average atomic mass of that element.