Answer:
![A^{-1} = \frac{1}{66} \left[\begin{array}{cc}-2&-5\\6&-18\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7B66%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%26-5%5C%5C6%26-18%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Given
![A = \left[\begin{array}{cc}-18&5\\-6&-2\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-18%265%5C%5C-6%26-2%5Cend%7Barray%7D%5Cright%5D)
Required
Determine the inverse
A matric is of the form:
![A = \left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
First, we need to calculate the determinant (D)

By comparison, we have:




The inverse is then represented as:
![A^{-1} = \frac{1}{D} \left[\begin{array}{cc}d&-b\\-c&a\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7BD%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dd%26-b%5C%5C-c%26a%5Cend%7Barray%7D%5Cright%5D)
This gives:
![A^{-1} = \frac{1}{66} \left[\begin{array}{cc}-2&-5\\6&-18\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7B66%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-2%26-5%5C%5C6%26-18%5Cend%7Barray%7D%5Cright%5D)
I need more context to answer this question.
Answer:
The number is 162.
Step-by-step explanation:
Let's let the number =n
So, we can set up an equation.
(n/9) is a number divided by 9.
Its "quotient" (the answer to that expression) is multiplied by 6.
6(n/9)
The product (answer) is 108.
6(n/9) = 108.
Then we can solve.
6(n/9) = 108
(n/9) = 18
n = 162
The simplified form of the given expression is 2015
<h3>Simplifying expressions </h3>
The given expression is (x-2)(x+2)(x²+4)-(x²+3)(x²-3)+2022
The expression can be simplified as shown below
(x-2)(x+2)(x²+4) - (x²+3)(x²-3) + 2022
x(x+2)-2(x+2)(x²+4) - x²(x²-3) +3(x²-3) + 2022
(x²+2x-2x-4)(x²+4) - (x⁴-3x²+3x²-9) + 2022
(x²-4)(x²+4) - (x⁴-9) + 2022
x²(x²+4) -4(x²+4) - (x⁴-9) + 2022
(x⁴+4x²-4x²-16) - (x⁴-9) + 2022
(x⁴-16) - (x⁴-9) + 2022
x⁴ -16 -x⁴ +9 + 2022
x⁴ -x⁴ -16 +9 +2022
= 2015
Hence, the simplified expression is 2015
Learn more on Simplifying an expression here: brainly.com/question/723406
#SPJ1
Answer:
9x^5
Step-by-step explanation:
the factors of 45:
1, 3, 5, 9, 15, 45
the factors of 36:
1, 2, 3, 4, 6, 9, 12, 18, 36
Greatest common is 9