Answer:
30
Step-by-step explanation:
62 = 2x+2
62-2 = 60
60/2 = 30
Slope= -3/2
Y-intercept=33/2
Answer:105
Step-by-step explanation:55-66=74 74times
The equation form of a circle is (x - a)² + (y - b)² = r²
Equation 1:
x² - 4x + y² + 12y - 20 = 0 ⇒ use the completing the square method for x² - 4x and y² + 12y
x² - 4x = (x - 2)² - 4
y² + 12y = (y + 6)² - 36
Put them back together, we have
(x - 2)² - 4 + (y + 6)² - 36 - 20 = 0
(x - 2)² + (y + 6)² -4 - 36 - 20 = 0
(x - 2)² + (y + 6)² - 60 = 0
(x - 2)² + (y + 6)² = 60
Equation 2:
x² + y² + 6x - 8y - 10 = 0
(x² + 6x) + (y² - 8y) -10 = 0
(x + 3)² - 9 + (y - 4)² -16 - 10 = 0
(x + 3)² + (y - 4)² - 9 - 16 - 10 = 0
(x + 3)² + (y - 4)² - 35 = 0
(x + 3)² + (y - 4)² = 35
Equation 3:
3x² + 12x + 3y² +18y - 15 = 0
3 [x² + 4x + y² + 6y - 5] = 0
x² + 4x + y² + 6y - 5 = 0
(x² + 4x) + (y² + 6y) - 5 = 0
(x + 2)² - 4 + (y + 3)² - 9 - 5 = 0
(x + 2)² + (y + 3)² - 4 - 9 -5 = 0
(x + 2)² + (y + 3)² - 18 = 0
(x + 2)² + (y + 3)² = 18
Equation 4:
5x² + 5y² - 10x + 20y - 30 = 0
5 [x² + y² - 2x + 4y - 6] = 0
x² + y² - 2x + 4y - 6 = 0
(x² - 2x) + (y² + 4y) - 6 = 0
(x - 1)² - 2 + (y + 2)² - 4 - 6 =0
(x - 1)² + (y + 2)² - 2 - 4 - 6 = 0
(x - 1)² + (y + 2)² - 12 = 0
(x - 1)² + (y + 2)² = 12
Equation 5:
2x² + 2y² - 24x - 16y -8 = 0
2 [x² + y² - 12x - 8y - 4] = 0
x² + y² - 12x - 8y - 4 = 0
(x² - 12x) + (y² - 8y) - 4 = 0
(x - 6)² - 36 + (y - 4)² - 16 - 4 = 0
(x - 6)² + (y - 4)² -36 - 16 - 4 = 0
(x - 6)² + (y - 4)² - 56 = 0
(x - 6)² + (y - 4)² = 56
Equation 6:
x² + y² + 2x - 12y - 9 = 0
(x² + 2x) + (y² - 12y) - 9 = 0
(x + 1)² - 1 + (y - 6)² - 36 - 9 = 0
(x + 1)² + (y - 6)² - 1 - 36 - 9 = 0
(x + 1)² + (y - 6)² - 46 = 0
(x + 1)² + (y - 6)² = 46
Answer:
4950
Step-by-step explanation:
The smallest number when rounded to the nearest 100 that becomes 5000 should be between the range of 4950 and 4999.
To the round any figure to the nearest hundred, the
of the number should be considered. If the number ranges from 1 to 49, it should be rounded to previous hundred, but if the number is between the range of 50 to 99, it should be rounded to the next 100.
Therefore the smallest number when rounded to the nearest 100 that becomes 5000 is 4950