1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
2 years ago
15

SOMEONE HELP IM NEWE SORRY TYSM IF U DO<3333

Mathematics
1 answer:
Semmy [17]2 years ago
5 0

Answer:

8/25 or 0.32

Step-by-step explanation:

You might be interested in
What is the difference between x-axis and the y-axis?
Marrrta [24]
The y- axis goes up and down.
and......
The x- axis goes from left right.
7 0
3 years ago
Read 2 more answers
PLZ HELP What are some ways you can get close to representing your awesome ideas even with limits on time and resources?
erastova [34]

Answer:

easily

Step-by-step explanation:

1.believe in your self

2.organise your ideas

3.make your ideas short and easy to understand

5 0
3 years ago
(AP Calc) the graph of the function f shown above has three line segments....
I am Lyosha [343]

Answer:

B

Step-by-step explanation:

The average rate of change of f(x) in the closed interval [ a, b ] is

\frac{f(b)-f(a)}{b-a}

Here [ a, b ] = [ - 1, 6 ] and from the graph

f(b) = f(6) = 0

f(a) = f(- 1) = 0, thus

average rate of change = \frac{0-0}{6+1} = \frac{0}{7} = 0

7 0
3 years ago
Indicate whether the following variables are qualitative (QL) or quantitative (QU): a. Favorite color ____ b. Current Occupation
Whitepunk [10]

Answer:

a. Qualitative.

b. Qualitative.

c. Quantitative.

d. Quantitative.

e. Qualitative.

Step-by-step explanation:

a.

Favorite color can be classified into different categories such as blue,orange, white etc, so, favorite color is a qualitative variable.

b.

Current Occupation can be classified into different categories such as teacher, lawyer and doctor etc, so, current occupation is a qualitative variable.

c.

Number of extra credit problems solved can be meaningfully presented as numerical figures so, number of extra credit problems solved  is a quantitative variable.

d.

Number of students in class can be meaningfully presented as numerical figures so, number of of students in our class is a quantitative variable.

e.

Exam Grades can be classified into different categories such as A, B and C etc, so, exam grades is a qualitative variable.

4 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Other questions:
  • Bradley's shoe length is 17 cm long. Which list shows the dinosaur skeletons that were more than 320 centimeters long?
    14·1 answer
  • Which expression is equivalent to (73)−2?
    5·1 answer
  • Help please see the pictures
    5·1 answer
  • Please help me :). i need help ASAP!!
    14·2 answers
  • Cab A charged $5x + 20 for a ride to the
    7·1 answer
  • you are a billing clerk. five hours are charged to an account at $70 per hour. how much should you bill the account
    14·1 answer
  • Carla and Rob left a 20% tip after having lunch at a restaurant. The amount of the tip was $6. Carla's lunch cost $15. Write an
    7·1 answer
  • If m∠DEF = (5x−8)°. Which equation would you use to find the value of x?
    12·1 answer
  • Anyone know the answer to this?
    10·1 answer
  • Comeplete the following :<br> Rx0 Do2 : (2,4) -&gt; (-4, 8) (4, -8) (-4, -8)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!