The answer is A I’m pretty sure
Answer:
X-----Independent Variable
Y-----Dependent Variable
Dependent Variable-----A variable whose value determines the value of the output
Independent Variable-----A variable whose value determines the value of the input
Input-----The value substituted into an expression or function
Output----The value that results from the substitution of a given input into an expression or function
Step-by-step explanation:
The problem states that you have a linear function so expect your equation to have this form:
y = mx + b
where m is the slope and b is the y-intercept. You are also given two points: P1(5, 6) and P2(14, 60). Use these points to solve for the slope m.
m = (y2 - y1) / (x2 - x1) = (60 - 6)/(14 - 5)
= 54/9 = 6
So our equation now becomes
y = 6m + b
To solve for b, plug in the values of P1:
6 = 6(5) + b ---> b = -24
Therefore, our equation is
y = 6m - 24
The rest of the points are
(8, 24)
(11, 42)
Answer:
and as 
Step-by-step explanation:
Given
-- Missing from the question
Required
The behavior of the function around its vertical asymptote at 

Expand the numerator

Factorize

Factor out x + 1

We test the function using values close to -2 (one value will be less than -2 while the other will be greater than -2)
We are only interested in the sign of the result
----------------------------------------------------------------------------------------------------------
As x approaches -2 implies that:
Say x = -3


We have a negative value (-12); This will be called negative infinity
This implies that as x approaches -2, p(x) approaches negative infinity

Take note of the superscript of 2 (this implies that, we approach 2 from a value less than 2)
As x leaves -2 implies that: 
Say x = -2.1

We have a negative value (-56.1); This will be called negative infinity
This implies that as x leaves -2, p(x) approaches negative infinity

So, the behavior is:
and as 