1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
3 years ago
5

The square pool was turned into a rectangular one and it's area was enlarged by a factor of 5 by enlarging one side of the pool

by 3 meters and the other side by 14. What are the new dimensions of the pool?​
Mathematics
1 answer:
ozzi3 years ago
7 0

\boxed{ \tt{the \: dimensions  \: are : }}\\  \boxed{ \tt{b = 9 \: meters} }\\ \boxed{ \tt{l = 20 \: meters}}

5 {s}^{2}  = (3 + s) \times (14 + s) \\ 5 {s}^{2}  =  {s}^{2} +  17s + 42 \\  {4s}^{2}  - 17s - 42 = 0 \\ s =  \frac{ - ( - 17) +  \sqrt{ {( - 17)}^{2}  - 4(4)(42)} }{2(4)}  \\ s =  \frac{17 + 31}{8}  \\ s = 6 \\ hence \to \:the \: dimensions  \: are : \\ b = s + 3 = 6 + 3 = 9 \: meters \\ l = s + 14 = 6 + 14 = 20 \: meters

You might be interested in
Answer pleaseee!!! There is a screen shot attached!
anastassius [24]

Answer:

7/33 = 21 repeating and I'm pretty sure the question wants you to write it as an improper fraction. so your answer would be 40/33

Step-by-step explanation:

5 0
2 years ago
How many different digits are needed for the base 6 system?​
lorasvet [3.4K]

Answer:

0, 1, 2, 3, 4 and 5

Step-by-step explanation:

In a nutshell, base six  is a number system that employs the numbers 0 through 5 instead of 0 through 9 in each digit. As a result, a number that would be stated as 6 in base ten is written as 10. We count one, two, three, four, five, ten, eleven, twelve, thirteen, fourteen, fifteen, twenty, and so on.

6 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
Please!!! Help!!! Brainliest of Right! it goes as 50 point in the end but i used 100 point if you help me i will help you!!
vekshin1

Answer:

2.  3.913 kg (3 dp)

3.  light cream

4.  240 CoffeeStops

5.  7 CoffeeStops per square mile

6.  2,861 cups of coffee each day

Step-by-step explanation:

Given:

  • Skim milk density at 20 °C = 1.033 kg/l
  • Light cream density at 20 °C = 1.012 kg/l
  • 1 liter = 0.264 gallons

<u>Question 2</u>

\begin{aligned}\textsf{1 gallon} & = \sf \dfrac{1}{0.264}\:liters\\\\\implies \textsf{Mass (1 gallon of skim milk)} & = \sf Density \times Volume\\& = \sf 1.033\:kg/l \times \dfrac{1}{0.264}\:l\\& = \sf 3.913\:kg\:(3\:dp)\end{aligned}

Therefore, the mass of 1 gallon of skim milk is 3.913 kg (3 dp)

---------------------------------------------------------------------------------------------

<u>Question 3</u>

Given:

  • Volume of liquid = 9 liters
  • Mass of liquid = 9.108 kg

\begin{aligned}\implies \sf Density & = \sf \dfrac{Mass}{Volume}\\\\& = \sf \dfrac{9.108\:kg}{9\:l}\\\\& = \sf 1.012\:kg/l \end{alilgned}

Therefore, the container holds light cream.

---------------------------------------------------------------------------------------------

<u>Question 4</u>

Given:

  • 15 CoffeeStops per 100,000 people
  • Population of Manhattan ≈ 1,602,000 people

\begin{aligned}\implies \textsf{Number of Coffeestops} & = \sf \dfrac{population}{density}\\\\& = \sf \dfrac{1,602,000}{100,000/15}\\\\& = \sf \dfrac{1,602,000}{100,000} \times 15\\\\& = \sf 240.3\end{aligned}

Therefore, there are 240 CoffeeStops.

---------------------------------------------------------------------------------------------

<u>Question 5</u>

Given

  • Manhattan ≈ 34 square miles

\begin{aligned}\implies \textsf{CoffeeStops density} & = \sf \dfrac{number\:of\:stores}{land\:area}\\\\& = \sf \dfrac{240}{34}\\\\& \approx \sf 7 \: \textsf{CoffeeStops per square mile}\end{aligned}

Therefore, the density of CoffeeStops is 7 per square mile.

---------------------------------------------------------------------------------------------

<u>Question 6</u>

Given:

  • Each person buys 3 cups of coffee per week

\begin{aligned}\implies \textsf{Cups served each week} & = \textsf{number of people} \times \textsf{number of cups per week}\\& = \sf 1,602,000 \times 3\\& = \sf 4,806,000\: \textsf{cups per week}\\\\\implies \textsf{Cups per day} & = \sf \dfrac{\textsf{cups per week}}{\textsf{days in a week}}\\\\& = \sf \dfrac{4,806,000}{7}\\\\& = \sf 686,571\:\textsf{(nearest whole number)}\end{aligned}

\begin{aligned}\implies \textsf{Cups served per day per shop} & = \dfrac{\textsf{cups per day}}{\textsf{number of shops}}\\\\& = \sf \dfrac{686,571}{240}\\\\& = \sf 2,861\: \textsf{(nearest whole number)} \end{aligned}

Therefore, each Manhattan CoffeeStop serves approximately 2,861 cups of coffee each day.

7 0
2 years ago
7) Solve the following system of equations below algebraically using substitution.
Pani-rosa [81]

Answer:

x = 3.25

y =4.75

Step-by-step explanation:

In order to Solve the following system of equations below algebraically using substitution method we say that;

let;

8x - 4y = 7 ..................... equation 1

x + y = 8.......................... equation 2

from equation2

x + y = 8.......................... equation 2

x = 8 - y.............................. equation 3

substitute for x in equation 1

8x - 4y = 7 ..................... equation 1

8(8-y) - 4y = 7

64-8y-4y=7

64-12y=7

collect the like terms

64-7 = 12y

57= 12y

divide both sides by the coefficient of y which is 12

57/12 = 12y/12

4.75 = y

y =4.75

put y = 4.75 in equation 3

x = 8 - y.............................. equation 3

x = 8 -4.75

x = 3.25

to check if your answer is correct, put the value of x and y in either equation 1 or 2

from equation 2

x + y = 8.......................... equation 2

3.25 + 4.75 =8

8=8.................... proved

8 0
3 years ago
Other questions:
  • The average temperature for four days days was 22 degrees what must the temperature be on the fifth day in order to make 23 degr
    6·1 answer
  • Helps pls! brailiest, thanks, rattings, etc. 20 full points!
    9·2 answers
  • Each visitor at Eacky World Water Park gets a free towel to use at the park. At the entrance workers arrange tje towels in stack
    13·1 answer
  • Simplify. x^2-3x-18/x+3
    7·1 answer
  • Ms. Stevens gave a 30 question quiz to her Algebra 1 class. After grading the quizzes, her students received the following score
    9·1 answer
  • if the school day starts at 8:50am and ends at 3:15pm. There is a playtime break at 10:40am until 10:55am and a lunch break from
    6·1 answer
  • Sanjay said that if a line has a slope of zero, then it never touches the x-axis. Which line proves that his statement is
    8·2 answers
  • Help me plz im very confused​
    10·1 answer
  • If 8 oranges cost $10.40, how many oranges can be bought for $33.80​
    7·2 answers
  • Need help with my math please. Determine the most probable next term in each list of numbers.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!