the answer is an anteater
Answer:
a) The potential energy in the system is greatest at X.
Explanation:
Let be X the point where a ball rests at the top of a hill. By applying the Principle of Energy Conservation, the total energy in the physical system remains constant and gravitational potential energy at the top of the hill is equal to the sum of kinetic energy, a lower gravitational energy and dissipated work due to nonconservative forces (friction, dragging).

Conclusions are showed as follows:
a) The potential energy in the system is greatest at X.
b) The kinetic energy is the lowest at X and Z.
c) Total energy remains constant as the ball moves from X to Y.
Hence, the correct answer is A.
Answer:
vf = v₁/3 + 2v₂/3
Explanation:
Using the law of conservation of linear momentum,
momentum before impact = momentum after impact
So, Mv₁ + 2Mv₂ = 3Mv (since the railroad cars combine) where v₁ = initial velocity of first railroad car, v₂ = initial velocity of the other two coupled railroad cars, and vf = final velocity of the three railroad cars after impact.
Mv₁ + 2Mv₂ = 3Mvf
dividing through by 3M, we have
v₁/3 + 2v₂/3 = vf
vf = v₁/3 + 2v₂/3
Don’t know sorry I’m just trying not a good person
Your sense of well being related to your ability to persevere through a challenge because you being fit gives you boost of you being able to things than if your not really in shape so you being in shape help you get through challenges and your stamina is more stable